

UNIVERSIDADE FEDERAL DO RECÔNCAVO DA BAHIA - UFRB CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CETEC BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

[NOME DO ESTUDANTE]

[TÍTULO DA MONOGRAFIA]

[NOME DO ESTUDANTE]

[TÍTULO DA MONOGRAFIA]

Trabalho de Conclusão de Curso apresentado ao Curso de Bacharelado em Engenharia de Computação da Universidade Federal do Recôncavo da Bahia (UFRB), pelo Centro de Ciências Exatas e Tecnológicas (CETEC), como requisito parcial para obtenção do Título de Bacharel em Engenharia de Computação.

Orientador: Prof. ...

[NOME DO ESTUDANTE]

[TÍTULO DA MONOGRAFIA]

Esta Monografia foi julgada adequada para obtenção do título de Bacharel em Engenharia de Computação e aprovada em sua forma final pelo Centro de Ciências Exatas e Tecnológicas (CETEC) da Universidade Federal do Recôncavo da Bahia (UFRB).

Aprovado em: _	/	
	BANCA EXAMINADORA	
	Prof (Orientador)	
	UFRB - CETEC.	
	Prof	
	UFRB - CETEC.	
	Prof	
	UFRB - CETEC.	

DEDICATÓRIA

À minha mãe, ...

"Astronarta libertado Minha vida me urtrapassa Em quarqué rota que eu faça."

(Dois mil e um - Tom Zé)

AGRADECIMENTOS

Graças à vida, que me deu tanto...

A Universidade Federal do Recôncavo da Bahia (UFRB), ao Centro de Ciências Exatas e Tecnológicas (CETEC), todos os servidores, professores e alunos.

Não esqueça de agradecer às instituições que lhe forneceram algum tipo de financiamento ao longo da graduação!!!

RESUMO

Resumo em português

Palavras-chave: Matemática. Educação. Função Afim. Função Definida por Partes. PDI.

ABSTRACT

English abstract.

Keywords: Mathematics. Education. Affine Function. Picewise Function. DIP.

LISTA DE ILUSTRAÇÕES

Quadro 1	 LIVROS ANALISADOS 	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	12	2
Quadro 1	 LIVROS ANALISADOS 		•	•	•	•	•	٠	•	•		•	•	•	•	•	٠	•	•	12	2

LISTA DE FIGURAS

Figura 1 — Representação gráfica da função afim · · · · · · · · · · · · · · · · · · ·	14
---	----

LISTA DE CÓDIGOS

Código 1 –	- Método da Bisseção · · · · · · · · · · · · · · · · · · ·	16
------------	--	----

LISTA DE TABELAS

Tabela 1 Your firs	st table. · ·							12
--------------------	---------------	--	--	--	--	--	--	----

SUMÁRIO

1	MOTIVAÇÃO INICIAL E JUSTIFICATIVA FUNDAMEN-						
	TADA DO ESTUDO · · · · · · · · · · · · · · · · · · ·	12					
2	FUNDAMENTAÇÃO TEÓRICA · · · · · · · · · · · · · · · · · · ·	14					
2.1	Teoria dos Registros das Representações Semióticas · · · · · · · ·	14					
2.2	Exemplo de seção.	15					
2.2.1	Exemplo de subseção · · · · · · · · · · · · · · · · · · ·	15					
2.2.2	Imagem da função afim · · · · · · · · · · · · · · · · · · ·	15					
2.2.3	Zero da função · · · · · · · · · · · · · · · · · · ·	15					
2.2.4	Exemplo de subseção · · · · · · · · · · · · · · · · · · ·	15					
2.3	Outra seção · · · · · · · · · · · · · · · · · · ·	16					
3	ABORDAGEM AO PROBLEMA · · · · · · · · · · · · · · · · · · ·	17					
4	CONSIDERAÇÕES FINAIS	18					
ANEXO A	Apêndice · · · · · · · · · · · · · · · · · · ·	19					
ANEXO A.1	Texto auxiliar do trabalho · · · · · · · · · · · · · · · · · · ·	20					
REFERÊNCIAS		21					

1 MOTIVAÇÃO INICIAL E JUSTIFICATIVA FUNDAMENTADA DO ESTUDO

Apresente o que motivou o estudo e a justificativa da relevância e necessidade do estudo. O Quadro 1 é uma exemplo de quadro.

Quadro 1 — LIVROS ANALISADOS

Referência para	Título do livro	Autor/Autores				
citar no texto						
Livro 1	Matemática Completa	Bonjorno, Giovanni Jr e				
		Paulo Câmara				
Livro 2	Matemática: Contexto e Aplicações	Luiz Roberto Dante				
Livro 3	Matemática	Emanuel Paiva				
Livro 4	Matemática: Ciência e Aplicações	Gelson Iezzi, Osvaldo				
		Dulce, David Degens-				
		zajn, Roberto Périgo e				
		Nilse de Almeida				
Livro 5	Matemática para compreender o mundo	Kátia Stocco Smole e				
		Maria Ignez Diniz				
Livro 6	Fundamentos de Matemática Elementar	Gelson Iezzi e Carlos				
		Marukami				

Fonte: Elaborado pela autor(a).

Tabela 1 -Your first table.

Value 1	Value 2	Value 3
α	β	γ
1	1110.1	a
2	10.1	b
3	23.113231	c

Um exemplo de lista de itens.

Livro 1 - Neste livro, ... Ao final das seções percebemos razoável variação de exercícios resolvidos e propostos.

Livro 2 - No segundo livro, ...

Livro 3 - Nesse exemplar ...

Livro 4 - Iezzi et al. (2016), ...

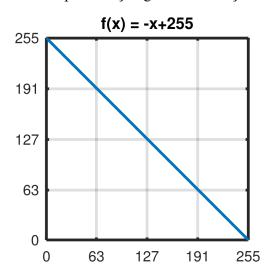
Livro 5 - As autoras abordam

Livro 6 - Neste livro, ...

2 FUNDAMENTAÇÃO TEÓRICA

Apresente um resumo das teorias utilizadas de forma a facilitar o acesso ao leitor do trabalho aos pré-requisitos para o entendimento do trabalho.

2.1 Teoria dos Registros das Representações Semióticas


Ensinar é uma tarefa ... O psicólogo e filósofo Raymond Duval, desenvolveu a Teoria dos Registros de Representação Semiótica - (TRRS)...

A *conversão* para Colombo, Flores e Moretti (2008) é (exemplo de citação):

[...] a conversão de uma representação se refere às operações em que o registro inicial é transformado em outro registro; por essa razão, é considerada como uma "transformação externa". Por exemplo, ao utilizarmos a linguagem algébrica para representar a frase "o dobro de um número resulta em oito", estamos realizando uma conversão do registro dado na língua natural para o registro dado na linguagem algébrica (COLOMBO; FLORES; MORETTI, 2008, p. 6).

Exemplo de figura.

Figura 1 — Representação gráfica da função afim

Fonte: Elaborada pelo autor

Assim, a Figura 1..

2.2 Exemplo de seção.

Murakami (2004, p. 81), define Função como:

Definição 2.1 Dado dois conjuntos A e B, não vazios, uma relação f de A em B recebe o nome de aplicação de A em B ou função definida em A com imagens em B se, e somente se, para todo $x \in A$ existe um só $y \in B$ tal que $(x,y) \in f$.

$$f$$
 aplicado de A em $B \iff (\forall x \in A, \exists | y \in B | (x,y) \in f)$ (2.1)

2.2.1 Exemplo de subseção

Murakami (2004, p. 100), define função afim como:

Definição 2.2 *Uma aplicação de* \mathbb{R} *em* \mathbb{R} *com a* \neq 0 *e cada x* \in \mathbb{R} *associa o elemento* $(a \cdot x + b) \in \mathbb{R}$.

$$f(x) = a \cdot x + b \quad com \quad (a \neq 0) \tag{2.2}$$

2.2.2 Imagem da função afim

Murakami (2004, p. 105) diz que:

reta permitindo a análise de que todos os valores de y estão relacionados com x.

2.2.3 Zero da função

Vejamos que f(x) é crescente pois na medida que os valores em x vão aumentando, as suas respectivas imagens também crescem.

2.2.4 Exemplo de subseção

Murakami (2004, p. 118), resume em:

A função afim:

$$f(x) = a \cdot x + b \text{ anul } a - se \text{ para } x = -\frac{b}{a}.$$
 (2.3)

Para $x > -\frac{b}{a}$, temos:

$$\begin{cases} se\ a>0\ ent\tilde{a}o\ f(x)=a\cdot x+b>0\\ se\ a<0\ ent\tilde{a}o\ f(x)=a\cdot x+b<0 \end{cases} \tag{2.4}$$

Isto é, $x > -\frac{b}{a}$ a função $f(x) = a \cdot x + b$ tem sinal de a.

Para $x < -\frac{b}{a}$, temos:

$$\begin{cases} se\ a > 0\ ent\tilde{a}o\ f(x) = a\cdot x + b < 0 \\ se\ a < 0\ ent\tilde{a}o\ f(x) = a\cdot x + b > 0 \end{cases} \tag{2.5}$$

Isto é, para $x < -\frac{b}{a}$ a função $f(x) = a \cdot x + b$ tem o sinal de '-a' (sinal contrário ao de a).

Exemplo de função definida por partes:

Exemplo 2.1 *Seja* $f : \mathbb{R} \to \mathbb{R}$ *definida por:*

$$f(x) = \begin{cases} x & se & 0 \le x \le 128 \\ 128 & se & 128 \le x \le 256 \\ x - 128 & se & c.c \end{cases}$$
 (2.6)

2.3 Outra seção

Exemplo de código.

Código 1 – Método da Bisseção

```
function xm=mb(f,xp,xn) % metodo da bissecao para zero de funcoes
    xm=(xp+xn)/2;
    y=f(xm);
    while(abs(y)>0.01) % enquanto /y/>ep -> laco de repeticao
        if(y>0) % se y maior que 0
            xp=xm;
    else % senao
            xn=xm;
    end
    xm=(xp+xn)/2;
    y=f(xm);
    end
end
Fonte: Elaborada pela autor(a) (GNU Octave)
```

3 ABORDAGEM AO PROBLEMA

Apresente a sua proposta de abordagem ao problema ou discussão da questão do trabalho monográfico.

4 CONSIDERAÇÕES FINAIS

Apresente suas considerações finais.

ANEXO A Apêndice

ANEXO A.1 Texto auxiliar do trabalho

O apêndice deve ser autoral, textos externos devem ser colocados como anexo.

REFERÊNCIAS

COLOMBO, J. A. A.; FLORES, C. R.; MORETTI, M. T. Registros de representação semiótica nas pesquisas brasileiras em educação matemática: pontuando tendências. *Zetetiké*, v. 16, n. 1, 2008.

DANTE, L. R. Matemática: contexto e aplicações. São Paulo: Ática, v. 1, 2013.

GIOVANNI, J. R.; BONJORNO, J. R.; JUNIOR, J. R. G. *Matemática completa*. [S.l.]: FTD, 2016.

IEZZI, G. et al. *Matemática: ciência e aplicações: ensino médio*. [S.l.]: Saraiva, 2016. v. 1.

MURAKAMI, C. Iezzi, gelson-fundamentos de matemática elementar. *Coleção São Paulo. Edit. Atual*, 2004.

PAIVA, M. et al. Matemática, vol 1. Editora Moderna Plus, 2010.

SMOLE, K. S.; DINIZ, M. I. Matemática para compreender o mundo 1. *São Paulo: Saraiva*, v. 1, 2016.