
EE567: Coding Theory

Homework #1 (due 10/02/14 )

Instructor: Arman Shokrollahi Student: Student’s name

Problem 1

Problem 1.1 of Ryan/Lin (We have changed the received word) :
A single error has been added (modulo 2) to a transmitted (7, 4) Hamming codeword, resulting in the received

word r = (1100 001). Using the decoding algorithm described in the chapter, find the error.

Solution
We want to solve this problem in two ways.
First Way :
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We know that v = (u p) = (u0u1u2u3 p0p1p2) has been transmitted. We have r = (1100 001) = (r0r1r2r3 r4r5r6) as
the received word. We rearrange the above Venn diagram as follows
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Clearly, Circles 2 and 3, in the figure above, have even numbers of 1’s, but Circle 1 does not. We conclude that
the error cannot be in Circles 2 and 3, because their rules are satisfied. So it must be r4 = 0 that is in error. Thus, r4
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must be 1. Hence, the decoded codeword is
v̂ = (1100 101), (0.1)

from which the decoded data û = (1100) may be recovered.

Second Way :
We want to solve the problem by some techniques based on generator and parity-check matrices. The parity-check

matrix H is helpful in correcting single errors in transmission when

(i) H has no column of 0’s,

(ii) no two columns of H are the same.

Consider the following matrix

H =


1 0 1 1

... 1 0 0

1 1 0 1
... 0 1 0

0 1 1 1
... 0 0 1

 .

It is easy to check that H satisfies these two conditions and that for the number of rows (r = 3) in H, we have
the maximum number of columns possible. If an additional column is added, H will no longer be useful for correcting
single errors.
The generator matrix G associated with H is

G =


1 0 0 0

... 1 1 0

0 1 0 0
... 0 1 1

0 0 1 0
... 1 0 1

0 0 0 1
... 1 1 1

 .

Consequently we have a (7, 4) group code. The encoding function E : Z4
2 → Z7

2 encodes four-bit messages into
seven-bit code words. We realize that because H is determined by three parity-check equations (that is, For all
w = w1w2w3w4 ∈ Z4

2, and E(w) = wG = w1w2w3w4w5w6w7 ∈ Z7
2, now try to find E(w) = wG. We get some general

equations which are called the parity-check equations. For more details, see pages 97, 98 of Ryan/Lin), we have now
maximized the number of bits we can have in the messages (of course, under our present coding scheme). In addition,
the columns of H, read from top to bottom, are the binary equivalents of the integers from 1 to 7. In general, if we
start with r parity-check equations, then the parity-check matrix H can have as many as 2r − 1 columns and still be
used to correct single errors. We denote the transposition of B by Btr. Under these circumstances H = [B | Ir], where
B is an r × (2r − 1− r) matrix, and G = [Im | Btr] with m = 2r − 1− r. The parity-check matrix H associated with
a (2r − 1, 2r − 1− r) group code.
We want to use some terminologies which can be found on pages 103, 104, and 105 of Ryan/Lin. We now have the
matrix H for a Hamming (7, 4) code. It is easy to check that the coset leader for the syndrome (100) is (0000 100).
Why we are talking about (100) ? because it is the syndrome corresponding to our received word r = (1100 001) ; note
that

H · rtr =

 1
0
0

 .

Finally, if we assume that c is the transmitted word, then c = (0000 100) + (1100 001) = (1100 101)
0.1
= v̂.


