
Abstract

This is an example of using eage.cls for writing EAGE expanded abstracts.

INTRODUCTION

This is an introduction. $\mathrm{AT}_{\mathrm{E}} \mathrm{X}$ is a powerful document typesetting system (Lamport, 1994). An excellent reference is (Kopka and Daly, 2004). The new eage.cls class complies with the $\mathrm{EAT}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ standard.

THEORY

This is another section.

Equations

Section headings should be capitalized. Subsection headings should only have the first letter of the first word capitalized.

Here are examples of equations involving vectors and tensors:

$$
\mathbf{R}=\left(\begin{array}{ll}
R_{\mathrm{XX}} & R_{\mathrm{YX}} \tag{1}\\
R_{\mathrm{XY}} & R_{\mathrm{YY}}
\end{array}\right)=\mathbf{P}_{M \rightarrow R} \mathbf{D} \mathbf{P}_{S \rightarrow M} \quad \mathbf{S}
$$

and

$$
\begin{equation*}
R_{j, m}(\omega)=\sum_{n=1}^{N} P_{j}^{(n)}\left(\mathbf{x}_{R}\right) D^{(n)}(\omega) P_{m}^{(n)}\left(\mathbf{x}_{S}\right) \tag{2}
\end{equation*}
$$

Note that the macro for the \tensor command has been changed to force tensors to be bold uppercase, in compliance with current SEG submission standards. This is so that documents typeset to the old standards will print out according to the new ones: e.g., tensor \mathbf{T} (note converted to uppercase).

Figures

Figure 1 shows what it is about.

Diagonalized data

Figure 1: This figure is specified in the document by \backslash plot\{waves\}\{width=\columnwidth\}\{This caption.\}.

Sometimes it is convenient to put two or more figures from different files in an array (see Figure 2). Individual plots are Figures 2a and 2b.

Figure 2: This figure is specified in the document by \backslash multiplot $\{2\}\{$ exph, $\operatorname{exgr}\}\{$ width $=0.4 \backslash$ textwidth $\}\{$ This caption. $\}$.

The first argument of the multiplot command specifies the number of plots per row.

Tables

The discussion is summarized in Table 1.

Table Example		
migration	$\omega \rightarrow k_{z}$	$k_{y}^{2}+k-z^{2} \cos ^{2} \psi=4 \omega^{2} / v^{2}$
zero-offset diffraction	$k_{z} \rightarrow \omega_{0}$	$k_{y}^{2}+k_{z}^{2}=4 \omega_{0}^{2} / v^{2}$
DMO+NMO	$\omega \rightarrow \omega_{0}$	$\frac{1}{4} v^{2} k_{y}^{2} \sin ^{2} \psi+\omega_{0}^{2} \cos ^{2} \psi=\omega^{2}$
radial DMO	$\omega \rightarrow \omega_{s}$	$\frac{1}{4} v^{2} k_{y}^{2} \sin ^{2} \psi+\omega_{s}^{2}=\omega^{2}$
radial NMO	$\omega_{s} \rightarrow \omega_{0}$	$\omega_{0} \cos \psi=\omega_{s}$

Table 1: This table is specified in the document by \tabl\{example\}\{This caption. $\}\{\ldots\}$.

ACKNOWLEDGMENTS

I wish to thank Ivan Pšenčík and Frédéric Billette for having names with non-English letters in them. I wish to thank Červený (2000) for providing an example of how to make a bib file that includes an author whose name begins with a non-English character and Forgues (1996) for providing both an example of referencing a Ph.D. thesis and yet more non-English characters.

APPENDIX A

APPENDIX EXAMPLE

According to the new SEG standard, appendices come before references.

$$
\begin{equation*}
\frac{\partial U}{\partial z}=\left\{\sqrt{\frac{1}{v^{2}}-\left[\frac{\partial t}{\partial g}\right]^{2}}+\sqrt{\frac{1}{v^{2}}-\left[\frac{\partial t}{\partial s}\right]^{2}}\right\} \frac{\partial U}{\partial t} \tag{A-1}
\end{equation*}
$$

It is important to get equation A-1 right.

APPENDIX B

$$
\begin{gather*}
\text { ANOTHER APPENDIX } \\
\frac{\partial U}{\partial z}=\left\{\sqrt{\frac{1}{v^{2}}-\left[\frac{\partial t}{\partial g}\right]^{2}}+\sqrt{\frac{1}{v^{2}}-\left[\frac{\partial t}{\partial s}\right]^{2}}\right\} \frac{\partial U}{\partial t} \tag{B-1}
\end{gather*}
$$

Too lazy to type a different equation but note the numeration.
The error comparison is provided in Figure B-1.

Figure B-1: This figure is specified in the document by \backslash plot* errgrp\}\{width=0.8\textwidth\}\{This caption.\}.

REFERENCES

Červený, V., 2000, Seismic ray method: Cambridge University Press.
Forgues, E., 1996, Inversion linearisée multi-paramètres via la théorie des rais: PhD thesis, Institut Français du Pétrole - University Paris VII.
Kopka, H., and P. W. Daly, 2004, Guide to ETEX: Addison-Wesley.
Lamport, L., 1994, $\mathrm{ET}_{\mathrm{E}} \mathrm{X}:$ A document preparation system: Addison-Wesley.

