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Abstract

In this paper we discuss how to price American, European and Asian options using a geometric

Brownian motion model for stock price. We investigate the analytic solution for Black-Scholes

differential equation for European options and consider numerical methods for approximating the

price of other types of options. These numerical methods include Monte Carlo, binomial trees,

trinomial trees and finite difference methods. We conclude our discussion with an investigation of

how these methods perform with respect to the changes in different Greeks. Further analysing how

the value of a certain Greeks affect the price of a given option.
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1 Introduction

1.1 The History and Origin of Options

Options, in one form or another, have been around for at least centuries. There are reports that

they have been around for millennia, being used as early as the sixth century B.C. in Ancient Greece

(Sinclair, 2010). Further there are many other instances where we see options crop up in history, clauses

in marine cargo contracts, such as those of the Romans and Phoenicians, would now be considered

options.

The reason for their wide spread use is, in part, due to the guarantees that they afford to those

who buy them. If we were to be traveling to a foreign country to buy something to trade, it is helpful

to know when we get back that we are going to be able to sell our product for a price agreed upon

prior to the trip. This allows us insurance on the trip, the knowledge of how much we will make when

we return. Alternatively, if someone else was to go on a voyage to acquire something we wanted, and

we believed that the price of that commodity was to go up, then making sure we could buy it at the

current price would allow us to make profit.

The interest then became how to price these contracts. If you want to sell grain for twice its

current price in one months time, it is obvious that the price of grain is unlikely to double in one

month, thus the price of this contract would likely be very high. Conversely, if we were wanting to

buy grain at twice the price in one months time, the cost of this contract would be very low. Owing

again to the unlikely event that the grain does double in price. Thus someone would happily take on

the contract cheaply knowing they can sell their grain to you for what is likely to be much more than

it would be worth in a months time.

1.2 Option Basics

Before we may discuss the pricing of options we need to introduce a few terms. The most key of these

being the definition of options and, we introduce this and some other key ideas here following the

structure of Hull (2005, Chap. 8).

Definition 1.1 (Option). An option is a contract that gives the buyer the right, but not the obligation,

to buy or sell an underlying asset at a specific price (known as the strike price) on or before a certain

date.

By an underlying asset we refer to the financial instrument on which the options price is based.

This could be futures, stocks, commodities or currency, noting a change in the price of the underlying

asset causes a change in the price of the option.

In the introduction we discussed the two types of options in an imprecise way, the buy side and

sell side of an option. These concepts are extended within the next definition, to give rise to the two

types of options that are used today, which we define here.

Definition 1.2 (Call). A call option is a contract that gives the buyer the right, but not the obligation,

to buy an underlying asset at a specific price on or before a certain date (known as the expiry date).

Definition 1.3 (Put). A put option is a contract that gives the buyer the right, but not the obligation,

to sell an underlying asset at a specific price on or before a certain date (known as the expiry date).

MA4XA 1 Dr. A. Chernov
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There are many different variations of puts and calls, the most popular being European, American

and Asian option types. Other types of options are often referred to as exotic options, these include;

basket options, barrier options, binary options, and down-and-out options. Each of these types has

a different structure in the way the pay-out is calculated or when it may be exercised. This term is

often used, and before we can differentiate between the types of options we must introduce it.

Definition 1.4 (Exercise). We say that we exercise an option when we decide to use that option.

That is, to buy or sell the underlying asset the option corresponds to.

The main difference between European and American options is when you can exercise them.

The term European is given to those options that may be exercised only at the date of expiration.

Alternatively American options may be exercised at any time before, or on, the date of expiration.

For both European and American options, as call options allow us to buy the stock at a specific

price, the payoff would be given by max(S−K, 0) and for a put max(K −S, 0), where the stock price

at the time the option is exercised (sometimes termed when it reaches maturity) is S and the strike

price is K.

Asian options are very different from the European and American options. This is because the

pay-out of this type of option is not dependent on a single value on or before the option expires.

Definition 1.5 (Asian Options). An option is said to be Asian or sometimes an average option if

the pay-out depends on the average price of the underlying asset over a period of time.

Insofar, we have discussed many different terms relating to options. We seek to give substance to

these ideas with two brief examples, one for a put and one for a call. These are similar example as to

the ones found in Hull (2005, P. 193) but have been adapted to better suit our discussion.

Example 1.1. Assume that a stock is trading at $50 per share. We could buy a European call option,

the right to buy the stock, with a strike price of $55. This is essentially “betting the price goes up”;

here we are hoping that the price rises to above $55, and if this happens we make profit. Lets say

that this option entitles us to buy 100 shares of the stock and cost us $11. For a European option the

pay-out, that is the amount of money we make on this transaction, is dependent on the price at the

date of expiration. So we have three cases,

1. The stock ends below $55. In this case we have lost money, that is the cost of the option $11.

This is because we are able to buy the stock for $55, but it is trading at less than that, so

exercising this option is worthless. So we have made no money here, yet only lost the cost of

the option.

2. The stock rises to or above $55.12. Here we have made a profit, we are able to buy 100 shares of

the stock at $55.12 or above. Hence, we buy these for our strike price $55 and sell them for the

price it is trading at. As the stock is on or above $55.12 per share we make $55.12−$55 = $0.12,

so for all 100 shares we make $12. Finally, subtracting the cost of the option $11 we have made

at least a dollar. It is worth noting that as the price of the stock could increase up to any

amount, our theoretical maximum profit here is infinite.

3. The stock ends between $55 and $55.11. Here we have made a profit. As with the profitable

case, we buy the stock for $55 and sell it for the price it is trading at. We see the maximum

profit we make is ($55− $55.11)× 100 = $11. However we have already paid $11 for the option,

MA4XA 2 Dr. A. Chernov
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so we have lost money, yet we still exercise the option. This is because we make some money on

the cost of the option back, i.e. if the stock was at $55.07, then we only lose $4 due to the $7

dollar we made from the option.

Example 1.2. As our second example we will consider an American put on a stock. Here we have

the right to sell a stock for a specified strike price, lets assume that this is $45. Much like with the call

this is a kind of bet that we are placing, here we are “betting that the stock will decrease in price”.

So lets say this option cost us $15 then if the stock is trading at $50, as with the previous example

we either make nothing, reduce our losses or make profit. However this is an American option and as

such can be exercised at any time between purchase and expiry dates. Hence, the only way we are

guaranteed to lose the cost of the option is if the stock does not ever drop below $44.85.

If it only drops below this value once and we do not exercise we would loose out. This shows the

difficulty when choosing to exercise American options.

1.3 Preliminaries

Lastly before we begin our full discussion of the methods used to price options we must introduce a

few basic mathematical results and notations that will be used throughout. These are mainly either

results from stochastic calculus (Gardiner, 1985) or probability (Durrett, 2010).

Definition 1.6 (Stochastic variable). Given a probability space, with events x, we can introduce a

stochastic (or random) variable as a function of x, denoted f(x). In particular the identity

function I(x) = x is one such random variable. Continuing on we will use capital letters to denote

random variables and lower case letters to denote their values.

Note that the random variable can be either continuous or discrete.

Definition 1.7 (Stochastic process). If a random variable X is dependent on time, so that it is defined

at different instances of time t1, t2, . . . , tn, then X(t) is called a stochastic process.

Definition 1.8 (Gaussian process). A process is said to be Gaussian if all possible distributions Xt

are Gaussian. This means that a Gaussian process is characterised fully by the mean and variance of

Xt.

Definition 1.9 (Characteristic function). If X is a stochastic variable taking a continuous range of

real numbers, its characteristic function, G(s), is defined as,

G(s) =
〈
eisX

〉
=

∫
P (x)eisxdx

where the integral varies over the range of x.

Example 1.3 (Characteristic function of a Gaussian). The Gaussian or normal distribution is

defined as,

P (x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
x ∈ (−∞,∞),
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where µ is the mean and σ2 the variance. Hence, from the definition of a characteristic function we

have that,

G(s) =

∫
P (x)eisxdx

=

∫ ∞
−∞

1√
2πσ2

exp

(
−(x− µ)2

2σ2
+ isx

)
= exp

(
−σ

2s2

2
+ isµ

)
Definition 1.10 (The Itô integral). The Itô integral between two points t and t0 is defined similarly

to the Riemann integral. We first begin by discretizing time, a typical type would be ti = t0 + i
n(t− t0)

for i = 0, 1, . . . , n . Then the Itô integral of a function g(Xt, t) will be defined as,∫ t

t0

g(Xt)dWt = lim
n→∞

n∑
i=1

g(Xti , t)(Wti −Wti−1)

where Wt is the Wiener process which we will introduce later. We will use the notation, ∆Wi =

Wti −Wti−1 and ∆t = ti − ti−1

Definition 1.11 (Moments and their properties). The moment of order m is defined as,

µm =

{∫
xmP (x)dx for continuous variables∑
i x

m
i P (xi) for discreet variables.

The average of any function of a stochastic variable X, denoted E[f(X)], and is defined as,

E[f(X)] =

{∫
f(x)P (x)dx for continuous variables∑
i f(xi)P (xi) for discreet variables

Then we may now write the definition of a moment as,

µm = E[xm]

Lastly from the our definition, due to the linearity of sums and integrals as well as the fact the measure

of a probability space is one, the following hold, for random variables X and Y and a ∈ R:

1. E[aX] = aE[X],

2. E[X + a = E[X] + a,

3. E[X + Y ] = E[X] + E[Y ],

4. E[XY ] = E[X]E[Y ] if X and Y are independent.

The last property is derived from the fact that if they are independent then their covariance is zero,

which we define below.
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Definition 1.12 (Variance and Covariance). The variance of a stochastic variable X is given by,

Var[X] = E[(X − E[X])2]

= E[X2]− (E[X])2.

Furthermore we have the covariance of two stochastic variables X and Y is defined by,

Covar = E[(X − E[X])(Y − E[Y ])]

= E[XY ]− E[X]E[Y ]

Definition 1.13 (Lognormal Distribution). A variable, X, is said to be lognormally distributed

if its logarithm is normally distributed. Thus, Y = ln(X) is normally distributed. Further, if Y is

normally distributed with mean a, and standard deviation b, we have that,

E[X] = ea+ b2

2 ,

Var[X] = (eσ
2 − 1)e2a+b2 .

Definition 1.14 (Cumulative distribution function). The cumulative distribution function, CX(x),

of a continuous random variable X is given by,

CX(x) = P (X ≤ x),

Where P (X ≤ x) is the probability of X < x. The cumulative distribution function of the standard

normal distribution is given by,

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2dt.

Definition 1.15 (Probability density function). The probability density function (P.D.F.) of a

continuous distribution is the derivative of the cumulative distribution function. This satisfies that if

X is a random variables and has P.D.F. f then the expected value of X is given by,

E[X] =

∫ ∞
−∞

xf(x)dx

2 The Black-Scholes Model for Stocks

The trouble with pricing options is without knowing the path the stock is likely to travel, it is difficult

to price the option, as clearly the price of an option must be dependent on the stock price. Here we

will develop a continuous time stochastic model for stocks and through this derive an equation for

the price of options. We may then solve this explicitly for European options to gain the formulae

for the pricing of European options; this model was first developed by Black and Scholes (1974) and

further improved by Merton (1973). Before we develop this model, there are a number of key ideas

and concepts we will need to introduce. We will follow much the same derivation as Hull (2005,

Chap.9,12-13).
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2.1 Factors Affecting the Price of Stock Options

As we expect the price of the option to reflect the price of the underlying asset, it seems logical that

a factor that affects the price of the underlying asset would also affect the price of the option (Hull,

2005, Chap. 9). So for stock options we consider the factors that affect stock prices. There are six

major factors. These are;

1. The current price the stock is trading at, S0,

2. The strike price, K,

3. The time until expiration, T ,

4. The volatility of the price of the stock, σ,

5. The risk-free interest rate, r,

6. The dividends that are expected to be paid, q.

Here the risk-free interest rate is the theoretical rate of return on a completely risk free investment.

The volatility represents how the price varies over time, which we will give a more rigorous definition

of this later. How each of these factors affects the price of European and American puts and calls is

given in Table 1. We will discuss how each of these factors affects the option. Note that in Table 1

we use + to mean the factor increases the price of the option, a − for a decrease and a ? when the

relationship is unknown.

Variable European Call European Put American Call American Put

Current stock price + - + -

Strike Price - + - +

Time to expiration ? ? + +

Volatility + + + +

Risk-free rate + - + -

Amount of future dividends - + - +

Table 1: The effect different factors have on the price of different options

Most of the ways each factor affects each type of option is intuitivee. If the price goes up, the

price of a call goes up as we are likely to see greater increases in the price of the stock and the price

of a put goes down as the decrease will not be as fast as the increase. This is due to the fact that,

as we will see later, the path the stock takes is the initial price multiplied by some variables. Hence

increases tend to happen faster than decreases.

The risk free interest rate is a more complex idea. Within the economy, as interest rates increase,

investors expect more return from the option, however the value of any money earnt in the future

decreases, due to these interest rates, termed inflation. This increases the price of stocks slightly

resulting in a higher chance of calls paying off and less of puts paying off.

With relation to the dividends, as the ex-dividend date approaches, that is the date at which

entitlement to dividends changes, the stock price decreases. Hence, due to the relationships for calls

and puts, the price of calls decreases and the price of a put increases.
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The most anomalous observations are those of the time to expiration and the volatility. The time

to expiration for American options increases for both puts and calls. This is due to that, for two

options, if the only difference is that one has a longer time to expiration, then the owner of the option

with a longer time has all of the same opportunities to exercise and more. This increases the value

of the option. For European options, this is not necessarily the case. If we have two options that

straddle the ex-dividend date, the one with the shorter life would be worth more.

Finally we consider volatility, we have not defined volatility until this point, we will discuss defini-

tion in later sections. For now we merely remark that volatility is a measure of how uncertain we are

of the stocks future price. If volatility increases, the chance the stock will do very well or very poorly

increases. As our maximum loss from an option contract is the price but the profit is either infinite

or large this benefits the owner hugely.

2.2 Markov and Wiener Processes

The next concept we will need to introduce is that of a Markov process. This is defined as a stochastic

process with the Markov property ; where the future value of the variable is dependent only on its

current value and not its history. We often say that a Markov process is memoryless due too this

property. We will examine a very specific type of Markov process, known as the Wiener process

(Gardiner, 1985, Chap. 3).

Definition 2.1 (Wiener process). Let W = (Wt)t∈[0,∞) be a continuous process. We say that this

process is a Wiener process if the following properties hold:

Property 1. We require that if ∆t is a small period of time,

Wt+∆t −Wt = ε
√

∆t,

where ε has a standardised normal distribution (i.e. a normal distribution with a mean

of zero and standard deviation of one).

Property 2. We require that each increment is independent, so that Wt and Ws are independent for

0 ≤ s < t,

Property 3. The function defined by t → Wt is almost surely everywhere continuous (i.e. the proba-

bility that Wt is everywhere continuous is one).

We see this is indeed a Markov process as the attribute described in Property 2 is precisely

the Markov property. Also note that the first property shows that the Wiener process is normally

distributed. An interesting implication of the Wiener process is found when we consider these normally

distributed Markovian variables.

Proposition 2.1. Let X and Y be two independent normally distributed variables with means µX
and µY respectively and variances σ2

X and σ2
Y respectively. Then the variable defined as Z = X +Y is

normally distributed with mean µX+µY and variance σ2
X+σ2

Y . We will use the notation A ∼ N(µ, σ2)

to mean “A variable A is normally distributed with mean µ and variance σ2”.

Proof. The characteristic function of X and Y are by definition,

GX(s) = E
[
eisX

]
and GY (s) = E

[
eisY

]
.
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We sum these two variables to generate a new variable Z = X + Y , which has characteristic function

given by (Durrett, 2010),

GZ(s) = E
[
eisZ

]
= E

[
eisX+isY )

]
= E

[
eisY

]
E
[
eisX

]
= GX(s)GY (s),

as these variables are independent. Now using the general formula for the characteristic function of a

normal distribution from section 1.3 we have that,

Gz(s) = GX(s)GY (s) = exp

(
itµx −

σ2
Xs

2

2

)
exp

(
itµY −

σ2
Y s

2

2

)
= exp

(
it(µX + µY )−

(σ2
x + σ2

Y )s2

2

)
.

Which is precisely the characteristic function of a normally distributed variable with mean µX + µY
and variance σ2

X + σ2
Y . Hence, W ∼ (µX + µY , σ

2
X + σ2

Y ) mean W has normal distribution with mean

µX + µY and variance σ2
X + σ2

Y .

Consider a variable X that follows a Markov process. If we know that the change in value of a

single day is a normal distribution with mean zero and variance one, then we may find the distribution

for two days. Due to the Markov property the above proposition applies, and we have that the change

in the variable over two days is normally distributed with mean zero and variance two.

Note that we may apply this as many times as we please to find the change in the variable over

any period but the variance increases showing the uncertainty of these predictions.

It follows that we may consider the change in the variable W over a relatively large period of time

W . We denote this WT −W0 and it can be thought of as the sum of changes in W in N small time

intervals of length ∆t = T/N . Hence we have that,

WT −W0 =
N∑
i=1

εi
√

∆t, (1)

where each of the εi for i = 1, 2, . . . , N are normally distributed with mean zero and variance one.

It follows from (1) that, the mean of WT −W0 is zero and has variance N∆t = T . In normal

calculus we consider the limit of a discrete process as the changes head toward zero. Similar notations

and conventions exist in stochastic calculus, here we will use the notation dW to refer to the Wiener

process W∆t+t −Wt in the limit ∆t→ 0.

2.3 Generalisation of the Wiener Process and Itôs Process

Insofar we have discussed the Wiener process, however there is a problem with this. We can see this

by defining the drift rate and variance rate, these are given as the mean change per unit time and

variance change per unit time. In our prior discussion of the Wiener process it is obvious that these

have been zero and one respectively. This leads to a small issue, the expected value of W at any given

time t, is equal to its current value. This is clearly an issue as stocks trend upward or downward. We

may capture this aspect of stocks by generalising the Wiener process. The generalised Wiener process

for a variable, here denoted as x is defined as,

dx = adt+ bdW, (2)

MA4XA 8 Dr. A. Chernov



Numerical and Analytic Methods in Option Pricing D. Edwards

where a and b are constants and dW is the Wiener process. Here if the dW term where removed from

(2), then it would have solution x = x0 + at for some x0 specified by an initial condition. This is the

way we assume the stock will grow, moving at a constant rate a. The dW term adds “noise” to this.

As stock movement is assumed to be random, this term introduces the randomness in the form of a

Wiener process.

Expressing this in discrete terms we have that ∆x = a∆t + bε
√

∆t, with ε as before. Hence we

have that the mean is now a∆t and variance is b2∆t. Again following similar arguments as with the

Wiener process, we see that for the continuous process that the mean and variance are now aT and

b2T respectively.

It is easy to see that even this model which allows us to drift the stock either up or down in a given

direction is not particularly favourable. It assumes that the drift is constant. This is, in practice, is

not the case, a stock may rise at a constant rate but crash the next day. Here we introduce an Itô

process to compensate for this.

Definition 2.2 (Itô processes). An Itô process is a is a type of generalised Wiener process where

the constants a and b are now dependent on the value of the underlying variable x and time t. In

mathematical terms,

dx = a(x, t)dt+ b(x, t)dW.

Itô processes address the issues discussed. Following the same structure as previous arguments

this has drift rate a(x, t) and variance rate b(x, t)2.

2.4 Itôs Lemma

Before we may prove Itôs lemma we must first prove a very important result, often regarded as the

corner stone of Itô calculus, dW 2
t = dt. This form of expressing this is merely short hand, the exact

statement is given and proven below (Gardiner, 1985, P. 87-88).

Theorem 2.1 (dW 2
t = dt). Given a function g(Xt) we have that,∫ t

t0

g(Xt)dW
2
t =

∫ t

t0

g(Xt)dt.

Proof. To begin first let us define a new variable Y as,

Y =

∫ t

t0

g(Xt)dWt −
∫ t

t0

g(Xt)dt

=
∑

g(Xi−1)∆W 2
ti −

∑
g(Xi−1)∆ti

=
∑

g(Xi−1)(∆W 2
ti −∆ti)

We may then calculate the moments of this new variable.

E [Y ] = lim
n→∞

n∑
i=1

E
[
g(Xi−1)(∆W 2

ti −∆ti)
]

= lim
n→∞

n∑
i=1

E [g(Xi−1)]E
[
(∆W 2

ti −∆ti)
]
,
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as g(Xi−1) and (∆W 2
ti − ∆ti) are independent, so the mean of the product is the product of the

mean. Furthermore, as ∆t is deterministic and merely a constant, from the properties discussed in

the preliminaries,

E [Y ] = lim
n→∞

n∑
i=1

E [g(Xi−1)] (E
[
∆W 2

ti

]
−∆ti).

Now note that, as E
[
WtiWti−1

]
= E

[
(Wti −Wti−1)Wti−1 +W 2

ti−1

]
. Splitting this up we have that,

E
[
(Wti −Wti−1)Wti−1 +W 2

ti−1

]
= E

[
(Wti −Wti−1)Wti−1

]
+ E

[
W 2
ti−1

]
The first term consists of two independent variables, thus,

E
[
(Wti −Wti−1)Wti−1

]
= E

[
(Wti −Wti−1)

]
E
[
Wti−1

]
= 0,

as the average of the Wiener process is zero. We then notice the second term may be expressed as,

E
[
W 2
ti−1

]
= E

[
Wti−1

]2
+ E

[
W 2
ti−1

]
− 2E

[
Wti−1

]2
+ E

[
Wti−1

]2
= Var[Wti−1 ] + E

[
Wti−1

]2
.

The average and variance of the Wiener process are known. Hence, we know that E
[
W 2
ti−1

]
= ti−1.

Then we have,

E
[
∆W 2

ti

]
= E

[
(Wti −Wti−1)2

]
= E

[
W 2
ti

]
+ E

[
W 2
ti−1

]
− 2E

[
WtiWti−1

]
= |ti − ti−1| = ∆ti,

hence the average of our variable Y is zero. Now note that,

Var[Y ] = E
[
Y 2
]
− E [Y ]2 = E

[
Y 2
]
.

So the second moment is precisely the variance. Considering the second moment we have that,

E
[
Y 2
]

= lim
n→∞

E

( n∑
i=1

g(Xti−1)(∆W 2
ti −∆t)

)2


= lim
n→∞

n∑
i=1

E
[
g(Xti−1)2

]
E
[
(∆Wti −∆t)2

]
+ 2

n∑
i=1

∑
j<i

E
[
∆W 2

ti −∆t
]
E
[
g(Xti−1)g(Xtj−1)(∆W 2

tj −∆t)
]
.

Note that in the second term in the above we have that E
[
∆W 2

ti −∆t
]

is independent of all the

other terms, so we may split up the angular brackets. However E
[
∆W 2

ti −∆t
]

= 0 hence there is no

contribution from the second term. Now consider E
[
(∆Wti −∆t)2

]
,

E
[
(∆Wti −∆t)2

]
= E

[
W 4
ti

]
− 2∆tE

[
W 2
ti

]
+ ∆t2

= 3∆t2 − 2∆t2 + ∆t2 = 2∆t2.
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Here we used that as ∆W is a Gaussian variable with zero mean this means that E
[
W 4
]

= 3E
[
W 2
]
,

this can be seen by direct integration of the Gaussian distribution and is quoted but not derived here.

Hence, we now have,

E
[
Y 2
]

= lim
n→∞

n∑
i=1

E
[
g(Xti−1)22∆t2

]
= lim

n→∞
2∆t

n∑
i=1

E
[
g(Xti−1)22∆t

]
.

Note that taking the limit n → ∞ is equivalent to taking ∆t → 0, as ∆t = (t − t0)/n. Hence,

E
[
Y 2
]

= 0. We have shown Y has mean and variance that are zero. The argument also holds for

higher moments as ∆t → 0 and these can be shown to be zero as well. We now have a variable with

all moments equal to zero and hence Y ≡ 0. This proves our result.

With this corner stone of stochastic calculus we may now prove Itô’s lemma, sometimes referred to

as Itô’s equation or Itô’s differentiation rule. Proving this will then allow us to derive the Black-Scholes

formula. We follow the method of Gardiner (1985, P. 95).

Lemma 2.1 (Itôs Lemma). Consider an Itô process described by,

dXt = A(t,Xt)dt+B(t,Xt)dWt, (3)

where Wt is the Wiener process. Then, if g(t, x) is a twice-differentiable scalar function of two variables

x, t ∈ R, then,

dg(t,Xt) =

(
∂g

∂t
+

∂g

∂X
A+

1

2

∂2g

∂X2
B2

)
dt+

∂g

∂X
BdW.

Proof. We do not give a full rigorous proof here as it is beyond the scope of this project, however

we may derive this result using results from Riemann calculus. Consider g(t,Xt), then from Taylor’s

Theorem we know that an approximation for the derivative of gof order O(dt) is given by,

dg(t,Xt) =
∂g

∂t
dt+

∂g

∂X
dXt +

1

2

∂2g

∂X2
dX2

t .

We include the final term as when we substitute in (3) we will obtain a dW 2 term which we know to

be dt. Substituting (3) into the above we obtain,

dg(t,Xt) =
∂g

∂t
dt+

∂g

∂X
(A(t,Xt)dt+B(t,Xt)dWt)

+
1

2

∂2g

∂X2
(A(t,Xt)dt+B(t,Xt)dWt)

2.

Recall that
〈
∆W 2

t

〉
= ∆t. Now taking limits we see that

〈
dW 2

t

〉
= dt, so dWt can be thought of as

O(dt). Expanding and removing terms using this rule of order greater than dt we have that,

dg(t,Xt) =
∂g

∂t
dt+

∂g

∂X
(A(t,Xt)dt+B(t,Xt)dWt) +

1

2

∂2g

∂X2

[
A(t,Xt)

2dt2

+B(t,Xt)
2dW 2

t + 2A(t,Xt)B(t,Xt)dtdW
2
t

]
=
∂g

∂t
dt+

∂g

∂X
(A(t,Xt)dt+B(t,Xt)dWt) +

1

2

∂2g

∂X2

[
B(t,Xt)

2dW 2
t

]
.
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Replacing dW 2
t with dt we have,

dg(t,Xt) =

(
∂g

∂t
+

∂g

∂X
A(t,Xt) +

1

2

∂2g

∂X2
B(t,Xt)

2

)
dt+

∂g

∂X
B(t,Xt)dWt,

as required.

2.5 Black-Scholes Model

As discussed before it is incorrect to assume that the stock follows a generalized Wiener process. We

then introduced an Itô process to counter this. It remains to be determined what the functions a(x, t)

and b(x, t) need to be in our Itô process. The appropriate assumption is that the expected return (the

drift over the stock price) is constant. Thus we must have that the expected return is µS for some

µ ∈ R (Hull, 2005, Chap. 12).

Furthermore, we assume that the percentage return’s variability over a small time interval, ∆t, is

constant and independent of stock price. This means that a buyer is as uncertain of the return (as a

percentage) when the stock costs $1 as when the stock costs $1000. This leads to the fact that the

the stock price should be proportional to the standard deviation over a small period of time ∆t. This

leads to the following final model,

dS = µSdt+ σSdW, (4)

where the variable σ is the volatility of the stock per year and µ is the expected rate of return

on the stock per year. This is the most widely used model for stock behavior. Now using (4) and

applying Itô’s lemma we obtain, for a function G(S, t) we have the process G follows is given by,

dG =

(
∂G

∂S
+
∂G

∂t
+

1

2
σ2S2∂

2G

∂S2

)
dt+

∂G

∂S
σSdW. (5)

We see from (4) that the volatility is a measure of how unsure we are about the path the stock will

take. This is because it is multiplying the random component. It can also be viewed as the standard

deviation of the lognormal distribution of ST , as we will see in the next section.

2.6 The Lognormal Property

Consider the equation as described in (4). We may use Itôs lemma to derive the process followed

by log(S) (Hull, 2005, Chap. 13). Let G = log(S) by applying Itôs lemma, (2.1), with Xt = S and

g(x, t) = log(S) we obtain,

dG =

(
µ− σ2

2

)
dt+ σdW.

With µ as, the expected rate of return, and σ being the volatility of the stock, these are constant.

Thus G follows a generalised Wiener process, with drift rate µ− σ2

2 and variance rate σ. Therefore, by

Proposition 2.1, between time 0 and T we see that G has mean (µ− σ2

2 )T and variance σ2T . Hence,

log(ST )− log(S0) ∼ φ
[(
µ− σ2

2

)
T, σ
√
T

]
⇒ log(ST ) ∼ φ

[
log(S0) +

(
µ− σ2

2

)
T, σ
√
T

]
.
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Where St is the stock price at time t. Then by Definition 1.13 we have that,

E(ST ) = S0eµT

Var(ST ) = S2
0e2µT

(
eσ

2T − 1
)
.

2.7 The Black-Scholes Differential Equation

Using this model for stock prices, we may derive the Blakc-Scholes differential equation (Hull, 2005,

Chap. 13). Given that f is an option subject to S, then f must be some function of S and t. Hence,

from (5),

df =

(
∂f

∂S
+
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
dt+

∂f

∂S
σSdW.

The equations (4) and the above have discretized versions,

∆S = µS∆t+ σS∆W. (6)

∆f =

(
∂f

∂S
+
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
∆t+

∂f

∂S
σS∆W, (7)

over a time interval ∆t. As the Wiener processes contained in ∆f and ∆S are the same, it follows

that we may construct a portfolio to eliminate this. Such a portfolio should sell an option and buy
∂f
∂S shares. Then by definition our portfolio, Π, is,

Π = −f +
∂f

∂S
S. (8)

The change in this over ∆t is,

∆Π = −∆f +
∂f

∂S
∆S.

By substituting in (6) and (7) we obtain,

∆Π =

(
∂f

∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t (9)

Over the time period ∆t we have eliminated ∆W , so the portfolio must be riskless in this time

period and must therefore make the riskfree interest rate. Thus,

∆Π = rΠ∆t

substituting (8) and (9) into the above, we yield,(
∂f

∂t
+

1

2
σ2S2 ∂

2f

∂S2

)
∆t = r

(
f − ∂f

∂S
S

)
∆t

so that,

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf.

The above is known as the Black-Scholes differential equation. It is solvable for some boundary

conditions and unsolvable analytically for others. In particular this is solvable for European options,

which we investigate in the next section.
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2.8 Black-Scholes Formula for European Options

Theorem 2.2 (Black-Scholes Pricing Formula). The value of a call option, fc, and a put option, fp,

are given by the following formulae;

fc = S0Φ(d1)−Ke−rTΦ(d2),

fp = Ke−rTΦ(−d2)− S0Φ(−d1),

where

d1 =
log(S0/K) + (r + σ2/2)T

σ
√
T

, (10)

d2 =
log(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ.
√
T . (11)

Before proving this we prove the following claim (Hull, 2005, P. 310-312).

Claim:. If V is lognormally distributed and the standard deviation of log(V ) is ω, then,

E(max(V −K, 0)) = E(V )N(d1)−KN(d2),

where E denotes the expected value, and we have that,

d1 =
log
(
E(V )
K

)
+ ω2

2

ω

d2 =
log
(
E(V )
K

)
− ω2

2

ω
.

Proof of claim. Define h(V ) to be the probability density function of V . Then we must have that,

E(max(V −K, 0)) =

∫ ∞
0

max(V −K, 0)h(V )dV (12)

=

∫ ∞
K

(V −K)h(V )dV. (13)

By assumption the variable log(V ) is normally distributed with standard deviation ω. Then from

Definition 1.13 we have that the mean, m, is given by,

m = log(E(V ))− ω2

2
.

We further define a new variable, W , by the following,

W =
log(V )−m

ω
. (14)

This is the transformation that turns the distribution of log(V ) to the standard normal distribution.

Let the probability distribution function of W be g(W ), so that,

g(W ) =
1√
2π

e
−W2

2 .
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Using (14) as a change of variable for (13) we obtain that,

E(max(V −K, 0)) =

∫ ∞
log(K)−m

ω

(
eQω+m −K

)
h(Q)dQ (15)

=

∫ ∞
log(K)−m

ω

eQω+mh(Q)dx−K
∫ ∞

log(K)−m
ω

h(Q)dQ. (16)

To solve this first consider,

eQω+mh(Q) =
1√
2π

exp

(
−(Q− ω)2 + 2m+ ω2

2

)
= em+ω2

2 h(Q− ω),

thus we now have that (16) is,

E(max(V −K, 0)) = em+ω2

2

∫ ∞
log(K)−m

ω

h(Q− ω)dQ−K
∫ ∞

log(K)−m
ω

h(Q)dQ. (17)

In (17) the first integral, the integrand is a normal distribution with a shifted mean. Thus it must

be a function of cumulative normal distribution as we are summing the area under the probability

distribution function, giving that,∫ ∞
log(K)−m

ω

h(Q− ω)dQ = [Φ(Q− ω)]∞log(K)−m
ω

= 1− Φ

(
log(K)−m

ω
− ω

)
= Φ

(
− log(K) +m

ω
+ ω

)
.

Substituting for m we obtain,

Φ

(
− log(K) +m

ω
+ ω

)
= Φ

 log
(
E(V )
K

)
+ ω2

2

ω

 = Φ(d1).

Similarly we obtain that the second integral in (17) is Φ(d2). Thus we have that,

E(max(V −K, 0)) = em+ω2

2 Φ(d1)−KΦ(d2).

Substituting for m and we obtain our required result.

Proof of Black-Scholes Formula. We will prove this for a call option. The proof for a put follows

similarly using a similarly proved claim and a similar strategy for this proof.

Consider a call option on a non-dividend paying stock with time of expiry T (initial time t = 0),

strike price K, risk-free interest rate r, current stock price S0 and volatility σ. The value of such a

call at T in a risk-neutral world would be,

E(max(ST −K, 0)). (18)
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Note here this is the expected value in a risk neutral world and not necessarily the real world. For the

rest of this proof all expected values will be as such.

Then as this is its value at time T , its value, c, would be (18) discounted to the initial time,

c = e−rTE(max(ST −K, 0)).

Then as we have shown the stochastic process underlying the stock is log normally distributed.

Then at time t = T , we have ST is log normally distributed, and from Section 2.6 E(ST ) = S0erST ,

the standard deviation of log(ST ) is σ
√
T . Using our claim,

c = e−rT
(
S0erTΦ(d1)− Φ(d2)

)
= S0Φ(d1)−Ke−rTΦ(d2).

Further in this case,

d1 =
log
(
E(ST )
K

)
+ σ2T

2

σ
√
T

=
log(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
log
(
E(ST )
K

)
− σ2T

2

σ
√
T

=
log(S0/K) + (r − σ2/2)T

σ
√
T

.

2.9 Black-Scholes Model for Other Options

In the previous section we found an analytic solution to the Black-Scholes differential equation for

European options. Due to the inequality constraints for American and averaging for Asian options,

it is not possible to solve the Black-Scholes equation analytically for these in general. There does

exist an analytic formula for American options if there is only one dividend to pay known as Roll-

Geske-Whaley model and for some types of Asian options however these are specialist and shall not

be discussed here.

2.10 Black-Scholes for Dividend Paying Stocks

On the date a dividend is paid the stock declines by the amount of the dividend (Hull, 2005, Chap.

13). Therefore we have that our expected rate of return is now µ = r − q and the model in (4) still

holds. The derivation follows similarly and we yield the following equation,

∂f

∂t
+ (r − q)S ∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf. (19)

Again this may be solved for European options and the previous statements for Asian and American

options are still true, so we may not solve this analytically for these. To solve this notice that the

previous probabilistic analysis as seen in Section 2.8 still holds if we take µ = r − q instead of µ = r.

So we see that as all of our formulae still hold, we merely replace r with r − q. Thus we have the

following theorem,
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Theorem 2.3 (Black-Scholes Pricing Formula with Dividends). The value of a call option, fc, and a

put option, fp, are given by the following formulae.

fc = S0e−qTΦ(d1)−Ke−rTΦ(d2),

fp = Ke−rTΦ(−d2)− S0e−qtΦ(−d1),

where

d1 =
log(S0/K) + (r − q + σ2/2)T

σ
√
T

,

d2 =
log(S0/K) + (r − q − σ2/2)T

σ
√
T

= d1 − σ
√
T .

3 Monte Carlo Simulation

3.1 Monte Carlo Concept

Monte Carlo is the first numerical method we will look at for finding the price of options. The method

is incredibly simple and relies on some of the ideas we built in the previous section. We shall develop

these ideas following the same ideas as Glasserman (2003, Chap. 1). The concept is as follows;

1. Attempt to predict the path of the price of the underlying stock from t = 0 to t = T where T is

the expiry date of the option,

2. Evaluate the stock price at t = T ,

3. Using the previous step, calculate the option price at maturity (t = T ),

4. Repeat (1) - (3) a statistically significant number of times,

5. Calculate the average option price at maturity,

6. Discount the average option price by the interest rate to obtain the option price at t = 0.

For the first step we use the model for stock behavior we developed in (4). We may solve this with

an application of Itôs lemma along with the dW 2
t = dt formula. Firstly note that by Itôs lemma we

have that,

d(ln(St)) =
1

St
dSt −

1

2S2
t

dS2
t . (20)

Then by using (4) with (20) and substituting in for dSt we have that,

d(ln(St)) =
1

St
St(µdt+ σWt)−

1

2S2
t

S2
t (σ2dW 2

t )

= µdt+ σdWt −
1

2
σ2dt.

Then through exponentiation we have that,

St = S0

[
exp

(
(µ− 1

2
σ2)t+ σWt

)]
, (21)
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where S0 is our initial stock price as before. Now note that as the Wiener process is normally

distributed with mean zero and standard deviation
√
T we may rewrite (21) as

St = S0

[
exp

(
(µ− 1

2
σ2)t+ σ

√
TN

)]
, (22)

where N is a standardized normal random variable. Note here that by taking logarithms of the above

we may again see that ln(St) is normally distributed.

Using (22) we may perform our first step by sampling for N to generate our path. This works

well for European options however for Asian options as we are considering the average this may not

generate a realistic average.

To compensate for this we split our interval into many different time points 0 = t0 < t1 < · · · <
tn−1 < tn = T . We sample at each of these time points to generate a path between [ti, ti+1] for

i = 0, . . . , n− 1. This allows us to generate more realistic paths.

The next step in the algorithm that was described above is very simple. However the third step

changes and varies depending on what kind of option we are considering so we shall see how we adapt

these methods for European, American and Asian options.

3.2 Applications of Monte Carlo

3.2.1 Monte Carlo for European Options

Monte Carlo is not a particularly useful method for European options. In light of the analytic formulas

that we have there is no need to use Monte Carlo for European option. Further as Glasserman (2003)

said “Monte Carlo is not a competitive method for computing one dimensional integrals” so a poor

convergence rate is expected of Monte Carlo.

For European options the method is fairly simple. For the third step in our algorithm we need

only use the payoff function to calculate the value of the option at the termination of each path. We

then calculate the average price at the terminal date and discount to the initial time t = 0. Using the

methods we have discussed insofar our algorithm for European options is as follows;

1. Simulate a path for the interval by taking a random sample from N ,

2. Calculate the payoff at maturity t = T , using the payofff function for European options Payoff(Sj,T ),

3. Repeat (1) - (2) a statically significant number of times to generate a large number, M , of

different terminal points indexed by j = 1, . . . ,M ,

4. Calculate the average payoff, ST , at maturity,

ST =
1

M

M∑
j=1

Payoff(Sj,T ),

5. Discount by the risk-free interest rate to the initial time t = 0 to find the value of the option V

such that

V = e−rTST .
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3.2.2 Monte Carlo for American Options

It is possible to adapt Monte Carlo to American options however it is very difficult. The problem

arises from the possibility of early exercise, therefore we would need to find an optimal exercise

rule(Glasserman, 2003, Chap. 8). As we will develop other methods to price American options we

will not consider this here.

3.2.3 Monte Carlo for Asian Options

Monte Carlo is a method we may employ to price Asian options (Glasserman, 2003, Chap. 1). The

difficulty with Asian options is in payoff function for these. For Asian options we have the following

payoff function; let S be the average price of the option between the initial time and terminal time

[0, T ]. Then,

Payoff =

{
max (S −K, 0) Call

max (K − S, 0) Put.
(23)

The way that the average is calculated yields several different types of Asian options. We will

focus on the discrete case where the average is calculated in the following way. Given a set of discrete

dates where the price will be monitored at times t1, . . . , tn, and a strike price K, the average of the

stock, S will be given by,

S =
1

n

n∑
i=1

Sti . (24)

Note that S is dependent upon the value of n we choose. We shall just use the notation S to mean

Sn. There are other ways such as a continuous average, priced through the methods developed by

Geman and Yor (1993). We will mainly focus on the above.

Assuming the same model for stock movement as in the European case and partitioning the interval

[0, T ] into n sub intervals as before we have that the discrete version of (22) is given by,

Sti+1 = Sti exp

(
(µ− 1

2
σ2)(ti − ti−1) + σ

√
ti − ti−1Ni

)
(25)

where i = 1, . . . , n and Ni denotes the ith sampling of N .

Using this our algorithm becomes;

1. For i = 1, . . . , n generate a Ni as our random component,

2. Use (25) to calculate the stock price at the next point where the stock price is monitored,

3. Calculate the average using (24),

4. Calculate the payoff, Cj , using (23),

5. Repeat the first three steps for j = 1, . . . ,m to generate m different paths,

6. Find the average payoff from the option,

C =
1

m

m∑
j=1

Payoff(Si).
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7. Discount this average to find the initial price of the option, so that option price is given by

e−rTC.

Using this method we may price Asian options (Glasserman, 2003, P. 99). There is another type of

option known as the Geometric average option. The only difference between the Asian and geometric

average options is the method in which the average is calculated. For the geometric option, under all

the previous assumptions, the average is given by,

S =

(
n∏
i=1

S(ti)

) 1
n

.

3.3 Optimization, Bias and Variance

The natural questions that arise for these methods are that of efficiency. Here we will analyze two

different methods of reducing our error. To begin we note that two different factors will cause our

answer to be different from the true answer; these are obviously variance and bias. As such we need a

“measure” to balance these. The appropriate tool for balancing these factors is the mean square error

(Glasserman, 2003, P. 16).

Definition 3.1. Let x̂ be an estimator of x, the mean square error of x̂ is then,

MSE(x̂) = E[(x̂− x)2] (26)

= E[(x̂− E[x̂])2] + (E[x̂]− x)2 (27)

= Var(x̂) + Bias2(x̂). (28)

In (27) the right hand term on the right hand side is Bias2(x̂), and the variance is given by the leftmost

term on the right hand side.

As Glasserman (2003) said “In applications of Monte Carlo to financial engineering, estimator

variance is typically larger than the bias”, we will focus on variance reduction techniques here on in

to reduce the mean square error.

3.3.1 Control Variate Techniques

Here the idea is to consider a similar option, with similar price, with a closed from formula for the

price available (Glasserman, 2003, P. 185-186). Then we simulate the paths for both options using the

same set of random variables. We compute the price from our Monte Carlo method and the analytic

solution to calculate the error. Then the correct simulation for our option, without a closed-form

pricing formula, would be our simulated value minus some weighting times the error involved.

Mathematically speaking, let PA be the price of an option and PB be the price of a different option

with closed form solution. We simulate with random variables, N1, N2, . . . , Nn, to get two prices for

the options from simulation say P sim
A and P sim

B . Then we have our error is given by EB = PB − P sim
B ,

where PB is found from our closed form formula. Then we have that the correct price for PA under

this simulation, P ∗A would be P ∗A = P sim
A − bEB.

So we seek the optimal b for this. Consider Y1, . . . Yn as n replications of simulation trying to

determine E[Yi] with each Yi independent and identically distributed (i.i.d.). Suppose now at each i
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we compute some Xi with the same random variable, then from the method as above define Y ∗i and

Y
∗

to be,

Y ∗i = Yi − b(Xi − E[X]),

Y
∗

=
1

n

n∑
i=1

Yi − b(Xi − E[X].

Then the control variate estimator above is unbiased as,

E[Y
∗
] = E[Yi − b(Xi − E[X])] = E[Y ] = E[Y ].

This is consistent as it holds under the limit n→∞ in the definition of Y . Now we may calculate the

variance of each of the Y ∗i ,

Var[Y ∗i ] = Var[Yi − b(Xi − E[X])] (29)

= σ2
Y − 2bσXσY ρX,Y + b2σ2

X , (30)

where σ2
X is the variance of X and the analogous definition for σ2

Y . It is easy to see that this technique

reduces the variance if 2bσXσY ρX,Y > b2σ2
X . To optimize b we use (30) and upon solving this we see

that b is optimized when,

b =
σ2
Y

σ2
X

ρX,Y =
Covar[X,Y]

Var[X]
.

In practice it is not guaranteed that all the values required to calculate b are present. As such we

use our simulations to yield the estimate, b∗,

b∗ =

∑n
i=1(Xi −X)(Yi − Y )∑n

i=1(Xi −X)2
. (31)

In the case of Asian options we have a closed form solution for the geometric average case but not

the arithmetic average case. As such we may apply the above using Y as our Asian option and X

as our geometric option. The close correlation of the price of these two types of assets was shown by

Broadie and Glasserman (2005).

To see this formula for geometric average options (Glasserman, 2003, P. 99-100) note that the

product of lognormal variables is itself lognormal. Furthermore, the geometric average of lognormal

variables is itself lognormal. It follows then from (22) that,(
n∏
i=1

S(ti)

)1/n

= S0 exp

(
(r − 1

σ2
)
1

n

n∑
i=1

ti +
σ

n

n∑
i=1

Wti

)
.

Following similar logic to Proposition 2.1 we can see that,

n∑
i=1

Wti ∼ N(0,

n∑
i=1

(2i− 1)tn+1−)

as each Wti is independent of the next due to the Markov property.
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Thus it follows that at time t = T the geometric average follows a process described by geometric

Brownian motion with,

µ = r − 1

2
σ2 +

1

2
σ̂2,

σ2 = σ̂2,

where,

σ̂2 =
σ2

n2T

n∑
i=1

(2i− 1)tn+1−i.

Thus we may price these options using the Black-Scholes formula with these values of µ and σ.

Now we may see how we can apply these for Asian options. We may use a geometric option as our

option with a closed form solution to help reduce the variance when finding the price of an Asian

option and we have the following algorithm to price the option,

1. Calculate the simulated price of the Asian and geometric option using the usual technique as

given in Section 3.1, using the same random variables,

2. Calculate the error in the geometric option by using the closed form solution we have for it,

3. Calculate b∗ as given in (31),

4. Calculate the new option price using by subtracting the error multiplied by b∗ from the value of

the Asian option.

This will become useful and is how we will implement this method when investigating performance

later on.

3.3.2 Antithetic Variates

We will here explore another variance reduction technique, antithetic variates (Glasserman, 2003, P.

205-207). In this method for each Yi generated we create a corresponding Ŷi. Each pair (Yi, Ŷi) must

be i.i.d.. Define the antithetic estimator as the average of these 2n replications, we then have the

value of our estimator is of this is given by,

Y
∗

=
1

2n

(
n∑
i=1

Yi +
n∑
i=1

Ŷi

)

=
1

n

n∑
i=1

(
Yi + Ŷi

2

)
.

There are several tricks we may employ here to reduce computing time, one such trick is choosing

N̂i = −Ni for Gaussian variables (note that this is non-zero as we apply the payoff to obtain Yi).

These tricks are not always readily available thus in the worst case scenario to do this method we

will require 2n replications. Thus we need to compare the new variance after the variance reduction

technique to the variance of if we used a normal method with 2n replications. It follows that this

method is reduces variance if,

Var[Y
∗
] < Var

[
1

2n

2n∑
i=1

Yi

]
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thus the above implies that,

Var[Yi + Ŷi] < 2Var[Yi]. (32)

We note that the left hand side can be written as,

Var[Yi + Ŷi] = Var[Yi] + Var[Ŷi] + 2Covar[Yi, Ŷi] (33)

= 2Var[Yi] + 2Covar[Yi, Ŷi], (34)

as both Yi and Ŷi have the same distribution and therefore must have the same variance. So using

(32) with (34) we see that the condition for antithetic variance reduction to be effective is,

Covar[Yi, Ŷi] < 0,

for each path.

Now we may apply this to the field of option pricing. To do this we will use the trick we discussed

earlier. The algorithm is as follows,

1. Simulate the price to generate the paths in the usual way as given in Section 3.1 and calculate

their payoff,

2. Use the same random components and choose, for the new paths, that Ni = −Ni where Ni is

the ith random variable we simulated in step 1 and calculate the pay off of these new paths,

3. For each path generated in step 1 average it with the new path generated in step 2,

4. Take the average of these paths and divide by n to find the approximate value of the option.

This is how the method will be implemented later on and we will explore its comparison to the

control variate technique.

4 Tree-based Models

Tree based models are another way we may price options. Here we assume that the underlying asset

follows a random walk, i.e. in each time step we assume it may move in a number of directions, each

with their own probability of occurring. We begin with the simplest model ,the binomial tree, we

develop this to attain some pricing formulae for European and American options (Glasserman, 2003,

Chap. 11).

4.1 Binomial Trees

The development of this model begins by assuming that there are only two directions in which the

asset can go; up or down. This model was first introduced by Cox et al. (1979) and has the advantages

of being easy to understand and yielding accurate prices, leading to its wide spread use. We will follow

much the same derivation and discussion.
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4.1.1 One-step Model

This model is best introduced through an example over a single time step. Consider a stock that is

currently trading at $20, assume that over the period of a month we know that the price will be either

$18 or $24. If we sell a European call option that expires at this date with strike price $21 then the

value of the option will be $3 if the end price is $24 or $0 if it is $18.

Then we may set up a riskless portfolio of stock. Consider if we sell one option an buy x shares of

stock, then the value of the stock will be 24x if the stock ends at $24 and the value of the portfolio will

be 24x− 3. If the stock drops to $18 then the value of the portfolio is 18x. We choose x so that the

portfolio is riskless, i.e. so that in the event of both outcomes the value of the portfolio is the same.

This gives 24x− 3 = 18x⇒ x = 0.5, and we have that our riskless portfolio is selling one option and

0.5 shares, with a value of 24 ∗ 0.5− 3 = 9.

A riskless portfolio must earn the riskless interest rate, so if this is value the of the portfolio at the

end of the month, we may discount this and obtain the value of the portfolio now. So assuming the

risk free interest rate is 12%,

9 ∗ e−
1
12
×0.12 = 8.910

It follows that, with the price of the stock today being $20, that the value of the portfolio today

is 20× 0.5− f where f is the price of the option, and hence the price of the option is $11.09. We see

that we may use this concept to price options.

Stock price S0

Stock price increases to S0u

Stock price decreases to S0d

Figure 1: A one step binomial tree

We may generalise this algebraically. Given that the underlying may increase or decrease by values

u and d respectively, where u − 1 and 1 − d are the percentage increase and decrease in the value

respectively we assign probabilities to these of q and 1− q. Hence, if the current stock price is S0, at

the end of the period the value of the stock will be either S0u or S0d with corresponding option payoff

value fu and fd respectively. This may be seen from Figure 1. We also assume that the interest rate

is constant. Then we have that the value of our portfolio is,

S0ux− fu or S0dx− fd,

for up and down movements respectively. Equating and solving for x we obtain that x = fu−fd
S0u−S0d

.

Furthermore we know that the value of the portfolio now is (S0ux− fu)e−rT , where T/1 = ∆t is our

time period and the cost of setting up the portfolio now is S0x − f with f as the true option price.

These must be equal at the initial time so equating and f = S0x(1 − ue−rT ) + fue−rT . Substituting
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in the value for our x we obtain,

f = S0

(
fu − fd
S0u− S0d

)
(1− ue−rT ) + fue−rT (35)

=
fu(1− de−rT + fd(ue−rT − 1))

u− d
(36)

= e−rT (pfu + (1− p)fd), (37)

where p = erT−d
u−d .

Here we see that p is our probability q. Consider the expected value of S at time T , denoted E[ST ]

this is given by E[ST ] = qS0u+ (1− q)S0d. We know that the investment is constructed to be riskless,

hence the expected value of the stock at time T would be given by E[ST ] = S0erT . Thus,

⇒ S0erT = qS0u+ (1− q)S0d (38)

⇒ erT = (u− d)q + d (39)

⇒ q =
erT − d
u− d

. (40)

So we see that p is indeed our probability, referred to and denoted as such herein.

4.1.2 Two-step Model

Here we consider a two step binomial tree this can bee seen in Figure 2. Here our time step is now

∆t = T
2 , and thus we now have that equations (37) and (40) are now,

f = e−r∆t(pfu + (1− p)fd) (41)

p =
er∆t − d
u− d

. (42)

Repeated application of (41) yields,

fu = e−r∆t(pfuu + (1− p)fud), (43)

fd = e−r∆t(pfud + (1− p)fdd). (44)

Then substituting equations (41), (43) and (44) we obtain,

f = e−r2∆t(p2fuu + 2p(1− p)fud + (1− p)2fdd). (45)

So we have again calculated the expected value of the tree, discounting to move from our finishing

time T to the initial time. Note that this formula only works for European options. This is as the

above does not allow for early exercise. We here give an example to give some substance to this idea,

this example is biased on one from Glasserman (2003, P. 250).

Example 4.1. Given that the stock price is at $30 and it may either increase or decrease by 10%,

then for two, one month periods our tree can be seen in Figure 3. Here we may combine the two

middle nodes as S0ud = S0du. Consider if we bought a European call option with a strike price of

$31. Then we see at all the nodes the option is out of the money, except the ones with values $33 and
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S0

S0u

S0d

S0ud

S0u
2

S0d
2

Figure 2: A two step binomial tree

$36.3, here it has value $2 and $5.3 respectively. We seek to discount our option price to the initial

node. We can either do this in two stages using equation (37) or much more efficiently using equation

(45). Noting that here u = 1.1, d = 0.9 and assume that r = 12% we may solve this using either of

these methods which we give below,

1. Using (37) to discount to the node with value $33 we have that, p = e−0.12× 1
12−0.9

1.1−0.9 = 0.45. Hence,

e−
1
12
×0.12(0.45× 5.3 + 0.55× 0) = 2.36.

Then applying this again to discount back to the initial node we have, that the option has value

$2.36 at this node and value $0 at the one below it. Hence,

e−
1
12
×0.12(0.45× 2.36 + 0.55× 0) = 1.053.

Thus we have found the value of our option.

2. Now using the alternate formula given in equation (45) we have,

f = e−2×0.12× 1
12 (0.452 × 5.3 + 2× 0.45× 0.55× 0 + 0.552 × 0) = 1.053.

As before.

30

33

27

29.7

36.3

26.4

Figure 3: A two step binomial tree for a stock starting at $30
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We see that both of these methods are effective, however the general two step equation is in general

easier to use. We now wish to generalise this method for n ∈ N time steps.

4.1.3 Generalization

We may further generalize this model to n ∈ N time steps, for European options (Hull, 2005, Chap.

11). In Section 4.1.2 we found the formula for a two step tree from a one step tree by repeatedly

applying (41). It follows from this that the formula for the value of the option after j upward moves

and i downward moves is given by,

fuj ,di = e−r∆t(pfuj+1,di + (1− p)fuj ,di+1).

Noting that our formula for the two step model has coefficients given by pascals triangle, and the

powers of p and (1− p) follow this as well we make the following claim.

Claim:. The general price of a European option for an n ∈ N step tree is given by,

f = e−rn∆t

 n∑
j=0

(
n

j

)
pj(1− p)n−jfuj ,dn−j

 . (46)

Proof. We prove this by induction. Clearly for n = 1 we have,

f = e−r∆t

 1∑
j=0

(
1

j

)
pj(1− p)1−jfuj ,d1−j


= e−r∆t

[(
1

0

)
p0(1− p)1fu0,d1 +

(
1

1

)
p1(1− p)0fu1,d0

]
= e−r∆t[pfu + (1− p)fd].

Which is exactly what we found in Section 4.1.1 and is equation (37). We can also check this for n = 2

against equation (45). We now perform our inductive step. Assume that (46) hold for some k ∈ N.

Then note that,

f = e−rk∆t

 k∑
j=0

(
n

j

)
pj(1− p)k−jfuj ,dk−j


= e−rk∆t

[(
k

0

)
(1− p)kfdk +

(
k

1

)
p(1− p)k−1fu,dk−1 + . . .

+

(
k

k − 1

)
pk−1(1− p)fu,dk−1 +

(
k

k

)
pkfuk

]
.

Now using the formula from (46) we may expand this giving,

f = e−rk∆t

[(
k

0

)
(1− p)k[pfu,dk + (1− p)fdk+1 ]e−r∆t

+

(
k

1

)
p(1− p)k−1[pfu2,dk−1 + (1− p)fu,dk ]e−r∆t + . . .

+

(
k

k

)
pk[pfuk+1 + (1− p)fuk,d]e−r∆t

]
.
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Here we note that for a term fuj ,dk−j+1 for j = 1, 2, . . . , k + 1 the only contributing factors from

are fuj ,dk−j+1 and fuj+1,dk−j . These contributing factors are
(
k
j−1

)
pj(1 − p)k−j+1 and

(
k
j

)
pj−1p(1 −

p)k−j(p− 1) respectively. Hence we have that the coefficient of fuj ,dk−j+1 is given by,

(1− p)k−j+1pj
(

k

j − 1

)
+

(
k

j

)
(1− p)k−j+1pj = (1− p)k−j+1pj

((
k

j

)
+

(
k

j − 1

))
= (1− p)k−j+1pj

(
k + 1

j

)
.

Hence, as this is the coefficient of our next step we have that,

f = e−rk∆t
k+1∑
j=1

e−r∆t
(
k + 1

j

)
(1− p)k−j+1pjfuj ,dk−j+1

= e−r(k+1)∆t
k+1∑
j=1

(
k

j

)
(1− p)k−jpjfuj ,dk−j .

We have shown that if it is true for k then it is true for k + 1. This completes the proof.

4.1.4 Finding u and d

We may find these parameters for both European and American options by considering variance (Hull,

2005, Chap. 11). From Section (2.3) and (2.5) we see that for a single step ∆t the variance of the

discrete version of (4) is σ2∆t. Furthermore from a one step tree we see that the variance is clearly,

pu2 + (1− p)d2 − [pu+ (1− d)]2. Equating these two we have that,

pu2 + (1− p)d2 − [pu+ (1− d)]2 = σ2∆t.

Using the values for p that we found in Section 4.1.1 we have,

er∆t(u+ d)− ud− e2r∆t = σ2∆t.

Using the series expansion for ex and ignoring terms of higher order than ∆t we have that,

u = eσ
√

∆t,

d = e−σ
√

∆t.

This is the Cox, Ross, and Rubenstien model.

4.1.5 Moment Matching and Other Probabilities

Above we have used a risk neutral argument to choose the parameters u and d (Hull, 2005, Chap. 11).

There are many methods to do this. These include the; Cox, Ross and Rubinstein model, the equal

probability model, Cox, Ross and Rubinstein with a drift model and the Titan model.

The problem with the Cox, Ross, Rubinstein model is that it does not match the moments of Black-

Scholes stochastic differential equation (S.D.E.) (Jarrow and Rudd, 1983). So we seek to find out how

we would choose the parameters u and d to match these moments. This is due to the approximation

we used in the last section ignoring some terms.
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As we have three unknowns to find we need three equations to define these. One idea came from

Titan this is that we require that the first three moments of the binomial trees and the Black-Scholes

S.D.E. This generates a new model not considered here.

Another model is the Cox, Ross, Rubinstein model with a drift. This introduces a new parameter

η so that the stock may drift. This allows us to model stocks more effectively as stocks tend to drift

up or down. In this case we have that,

u = eη∆t+σ
√

∆t

d = eη∆t−σ
√

∆t

with p as before. Alternatively as Jarrow and Rudd (1986) said we may derive these in an alternative

way. Consider (4) this implies which,

log

(
ST
St

)
= µt+ σ

√
tWt.

We may rewrite the above with Wt = N where N is a standardized normal distribution. Further

from our discussion on binomial trees for an n step tree we have that, if u = eu
′

and d = ed
′
,

ST = Ste
ju′+(n−j)d′ (47)

⇒ log

(
ST
St

)
= nd′ + (u′ − d′)j. (48)

for a tree with j upward movements, with probability,(
n

j

)
pj(1− p)n−j .

It follows that this is binomialy distributed with mean np and variance np(1− p). Then we wish that

for large n that these two distributions are equal, causing their moments to be the same. This is a

known result in probability Chung (1974). Thus we have that, if p is a constant independent of n, as

n→∞,

j − np√
np(1− p)

∼ N (49)

where ∼ denotes convergence in the distribution. Now here we may choose p = 1
2 as the above

guarantees the first two moments are equivalent. We require a third equation to solve for our three

unknowns. Then we have that (49) becomes,

j ∼
√
n

2
N +

n

2
,

and substituting this into (48) we have,

log

(
ST
St

)
≈ nd′ + (u′ − d′)

(√
n

2
N +

n

2

)
.

Equating this with (47) and equating coefficient of N and constants we yield,

µ̂t = nd′ + (u′ − d′)n2
σ
√
t = (u′ − d′)

√
n

2

}
⇒

 u′ = µ̂t
n + σ

√
t
n

d′ = µ̂t
n − σ

√
t
n
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where µ = r − σ2/2 thus we have that,

u = eu
′

= e(r−σ2/2)t/n+σ
√
t/n

d = ed
′

= e(r−σ2/2)t/n−σ
√
t/n

p =
1

2
.

This is known as the Equal probability model or Jarrow-Rudd model.

4.2 Trinomial Trees

Trinomial trees have a near identical concept to that of binomial trees (Hull, 2005, Chap. 11). The

key difference is that instead of having two paths the stock can take at any given node we now have

three. This now assumes that the stock can rise or fall by specified amounts or stay the same in any

given time step. This can be seen from Figure 4. The reason that we write S0m for the middle branch

is as for models such as the Boyles model with a drift we may have that m 6= 1.

S0

S0u

S0d

S0m

Figure 4: A one step trinomial tree

4.2.1 One-step Model

Following exactly the same logic as before we have that for a one step tree our option price would be

given by,

f = e−rT (pufu + pmfm + pdfd),

where pu is the probability of going up and the analogous definitions for pm and pd.

4.2.2 Generalization

Here the generalization is very akin to that of the binomial tree case. Here we may work backwards

from the end nodes to obtain the price at the initial node as before. The concepts and algorithms for

price calculation are similar to the binomial case with the obvious changes for the middle branch.

Here we do not have the availability of a general formula for the European or American case. Thus

we must work backwards through the tree to calculate our price.

4.2.3 Moment Matching and Other Probabilities

Here we now have six unknowns to solve for. Assuming that we match the first two moments as in

Jarrow and Rudd (1983) or the alternative derivation of Cox, Ross, and Rubinstein, we still need four

more equations. Using that pu + pd + pm = 1, ud = 1 and m = 1 we still require another equation.
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The approach proposed by Boyle (1988) is to introduce a stretch parameter, λ, so that u = eλσ
√
t.

This can take many values but we shall only consider λ =
√

2 due to the equivalence of the trinomial

trees method and the explicit finite difference method. Taking this value of λ we obtain that,

u = eλ
√

2∆t,

d = e−λ
√

2∆t,

m = 1,

with probabilities,

pu =

(
eµ∆t/2− − e−σ

√
∆t/2

eσ
√

∆t/2 − e−σ
√

∆t/2

)2

pd =

(
eµ∆t/2− − e−σ

√
∆t/2

eσ
√

∆t/2 − eσ
√

∆t/2

)2

pm = 1− pd − pm.

There are other methods including equal probabilities or four moment matching trees that we shall

not consider here.

5 Finite Difference Methods

We may use finite difference methods to solve the Black-Scholes equation and therefore price options.

We first recall a few basic results about Taylor series and finite difference methods. Let f(x) be a

function that is twice differentiable, we know using Taylors theorem that,

f ′′(x) =
1

(∆x)2
(f(x+ ∆x) + f(x−∆x)− 2f(x)) +O((∆x)2), (50)

f ′(x) =
1

2∆x
(f(x+ ∆x) + f(x−∆x)) +O((∆x)2). (51)

These are well known approximation to us, for the single variable case. We know that Equation

(51) is known as the central difference approximation, we are also familiar with the forward difference

approximation and backward difference approximation, which respectively are,

f ′(x) =
1

∆x
(f(x+ ∆x)− f(x)),

f ′(x) =
1

∆x
(f(x)− f(x−∆x)).

Now we attempt to extend these methods to functions of two variables, we will follow the same

approach as Smith (1965).

5.1 Concept

We begin by extending our notion of how to approximate a single variable function to two variables

(Hull, 2005, Chap. 17). Let f be a function of two variables x and y as we may not divide the whole

infinite plane we must truncate, choosing some xmin and xmax and similarly for y. We then subdivide
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x

y

∆y

∆x

i, j i+ 1, j

i, j + 1

i− 1, j

i, j − 1

Figure 5: The partitioning of the x, y plane for a two dimensional finite difference method

the truncated x, y plane into rectangles of width ∆x = h and height ∆y = k, this may be seen in

Figure 5. Then we may represent a point (x, y) on the corner of any rectangle as x = ih and y = jk,

for appropriate i, j ∈ N. Then we denote the value of f at this point as, f(x, y) = f(ih, ik) = fi,j .

The by (50) we have that,

∂2f

∂x2
=
f((i+ 1)h, jk)− 2f(ih, jk) + f((i− 1)h, jk)

h2

=
fi+1,j − 2fi,j + fi−1,j

h2
,

with leading error of order h2. Similarly, we may find the second derivative with respect to y and

redefine the forward difference approximation and backward difference approximation in terms of our

new notation, for two variables.

∂2f

∂y2
=
fi,j+1 − 2fi,j + fi,j−1

k2
+O(k2),

∂f

∂y
=
fi,j+1 − fi,j

k
+O(k),

∂f

∂y
=
fi,j − fi,j−1

k
+O(k).

For options we are attempting to approximate the derivatives of the price of the option with respect

to time and the underlyings’ price, as well as the second derivative with respect to the underlyings’

price. Following the method we described we first need to partition the plane, here the (t, S) plane.

We choose divide T into N equally spaced intervals, so h = ∆t = T
N . Similarly we choose to partition

S into M equally spaced intervals so k = ∆S = S
M , indexing N by i and M by j. It is important that
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M be chosen so that S0 is one of the points considered (i = 0), so we may calculate the value of the

option at this point.

5.2 Terminal and Boundary Conditions

We have the framework required to approximate the derivatives, however to solve this we need terminal

and boundary conditions (Gilli, 2011, P. 78). As we are required to truncate the plane the actual

boundary conditions at ∞ and 0 are of little use to us. We must therefore examine the boundary

conditions for the truncated plane. These will differ for both calls and puts, and for European and

American options.

Say that we truncate the plane so that S ∈ [Smin, Smax], we still consider t ∈ [0, T ]. Then we have

the boundary and terminal conditions for a European option, are given in Table 2, where V (S, t) is

the value of the option at stock price S and at time t. These boundary and side conditions are found

Boundary European Call European Put

t = T V (S, T ) = max(Smin + j∆S −K, 0) V (S, T ) = max(K − Smin − j∆S, 0)

S = Smin V (Smin, t) = max(Smin −K, 0) V (Smin, t) = Ke−r(T−t)

S = Smax V (Smax, t) = max(Smax −K, 0) V (Smax, t) = max(K − Smax, 0)

Table 2: The conditions at each boundary of the gird for a European option

by using the payoff function at the necessary points. The points of interest are at the termination

date and the sides as this is where we have truncated our plane to, hence we arrive at the above. We

may then extend this idea to American options.

The main difference between the American and European case is the lack of need to discount, as

we are able to exercise early. This means that our boundary and terminal conditions for an American

option are given by Table 3.

Boundary American Call American Put

t = T V (S, T ) = max(Smin + j∆S −K, 0) V (S, T ) = max(K − Smin − j∆S, 0)

S = Smin V (Smin, t) = max(Smin −K, 0) V (Smin, t) = K

S = Smax V (Smax, t) = max(Smax −K, 0) V (Smax, t) = max(K − Smax, 0)

Table 3: The conditions at each boundary of the gird for an American option

5.3 Implicit Method

Hence partitioning the plane as we have discussed, we now have that h = ∆S, k = ∆t and x = S. When

approximating the Black-Scholes differential equation we use a backwards difference approximation for

the ∂f
∂S derivative, a forward difference approximation for the ∂f

∂t and a central difference approximation

for the ∂2f
∂S2 derivative (Hull, 2005, Chap, 17). Hence, the Black-Scholes equation becomes,

fi+1,j − fi,j
∆t

+ rj∆S
fi,j+1 − fi,j−1

2∆S
+

1

2
σ2(j∆S)2 fi,j+1 + fi,j−1 − 2fi,j

∆S2
= rfi,j . (52)
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We may then rearrange this to find coefficients for the fi,j−1, fi,j and fi,j+1. This yields that (52)

is now,

ajfi,j−1 + bjfi,j + cjfi,j+1 = fi+1,j (53)

where,

aj =
1

2
(r − q)j∆t− 1

2
σ2j2∆t,

bj = 1 + σ2j2∆t+ r∆t,

cj = −1

2
(r − q)j∆t− 1

2
σ2j2∆t.

Note that these constants are independent of S. This is because the ∆S and ∆S2 introduced by the

derivatives are the same ∆S that we are considering the option over in any given triangle. Thus once

we discretize the plane we have cancellation resulting in the above relationships.

Now we need to solve this so that we can calculate the value of our option at t = 0 i.e. i = 0. For

a European option we begin by considering i = N − 1 in (53), for j = 1, . . . ,M − 1. Thus we have

M − 1 simultaneous equations to solve. If we write out a few of these,

a1fN−1,0 + b1fN−1,1 + c1fN−1,2 = fN,1

a2fN−1,1 + b2fN−1,2 + c2fN−1,3 = fN,2

...

aM−2fN−1,M−3 + bM−2fN−1,M−2 + cM−2fN − 1,M − 1 = fN,M−1

aM−1fN−1,M−2 + bM−1fN−1,M−1 + cM−1fN − 1,M = fN,M .

Note that all the fi,N are known from the boundary conditions. Furthermore the terms a1fN−1,0

and cM−1fN−1,M are known from the boundary conditions. We may then express our system with

unknowns on the left and knowns on the right.



b1 c1

a2 b2 c2

a3 b3 c3

. . .
. . .

. . .

aM−2 bM−2 cM−2

aM−1 bM−1





fN−1,1

fN−1,2

fN−1,3
...

fN−1,M−2

fN−1,M−1


=



fN,1
fN,2
fN,3

...

fN,M−2

fN,M−1


+



−a1fN−1,0

0

0
...

0

−cM−1fN−1,M


.

Allowing A to be the leftmost matrix and Fi to be the leftmost vector so that Fi+1 is the second

leftmost vector and Bi to be the rightmost vector we have that,

AFi = Fi+1 +Bi. (54)

In the matrix form above we have taken i = N − 1 however we note that this is true for arbitrary i.

We may solve these using the tridiagonal matrix algorithm for N−1, then the FN−1 we have found

is used in (54) with i = N − 2 to find FN−2. We may continue doing this until we reach i = 0 and we

may find the value of our option at this point.
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For an American option we apply the same method however after each iteration of the method we

compare the Fi we found to a vector, P the payoff at each j,

Pj =

{
j∆ max(S −K, 0) if call

max(K − j∆S, 0) if put

we compare the each of the j = 1, . . . ,M − 1 vector and take the maximum. After performing our

method once, we obtain

Fi,j = max(Pj , Fi,j)

where Fi,j is the jth component of Fi.

So we have discussed how to use the implicit method to find the value of an option. There is also

the explicit method which has a very different solution method.

5.4 Explicit Method

The main difference between the implicit and explicit methods is that we assume that the values of
∂f
∂S and ∂2f

∂S2 at a given point (i, j) is the same as at the point (i+ 1, j) for the explicit method (Hull,

2005, Chap. 17). We then have that,

fi+1,j − fi,j
∆t

+ rj∆S
fi+1,j+1 − fi+1,j−1

2∆S
+

1

2
σ2(j∆S)2 fi+1,j+1 + fi+1,j−1 − 2fi+1,j

(∆S)2
= rfi,j .

Again we rearrange the above to obtain,

fi,j = a∗jfi+1,j−1 + b∗jfi+1,j + c∗jfi+1,j+1

where,

a∗j =
1

1 + r∆t

(
−1

2
(r − q)j∆t+

1

2
σ2j2∆t

)
,

b∗j =
1

1 + r∆t

(
1− σ2j2∆t

)
,

c∗j =
1

1 + r∆t

(
1

2
(r − q)j∆t+

1

2
σ2j2∆t

)
.

Note here that this is a much simpler method to implement. To go back a time step it is merely

a linear combination of the nodes that came before it. Thus, as the value of fN,j are known, we may

start with these and work back to i = 0 for the price of our option.

5.5 Change of Variables

We discussed before in Section 2.6 that the Black-Scholes equation is lognomally distributed. This

gives us motivation to perform the change of variables, z = ln(x) (Hull, 2005, Chap. 17).

We begin this by defining G = ln(S). Then by computing derivatives we see that the Black-Scholes

differential equation becomes,

∂f

∂t
+

(
r − q − σ2

2

)
∂f

∂G
+

1

2
σ2 ∂

2f

∂G2
= rf.
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We now apply the finite difference methods again. Note that we are now considering equally spaced

values of G and not S. Then we have that the implicit methods’ equation becomes,

fi+1,j − fi,j
∆t

+ (r − q − σ2

2
)
fi,j+1 − fi,j−1

2∆G
+

1

2
σ2 fi,j+1 + fi,j−1 − 2fi,j

∆G2
= rfi,j .

So that now, we have

αjfi,j−1 + βjfi,j + γjfi,j+1 = fi+1,j ,

where,

αj =
∆t

2∆G
(r − q − σ2

2
)− ∆t

2∆G2
σ2,

βj = 1 +
∆t

∆G2
σ2 + r∆t,

γj = − ∆t

2∆G
(r − q − σ2

2
)− ∆t

2∆G2
σ2.

Furthermore the explicit methods’ equation becomes,

fi+1,j − fi,j
∆t

+ (r − q − σ2

2
)
fi+1,j+1 − fi+1,j−1

2∆G
+

1

2
σ2 fi+1,j+1 + fi+1,j−1 − 2fi+1,j

∆G2
= rfi,j .

Again we now have that,

α∗jfi+1,j−1 + b∗jfi+ 1, j + c∗jfi+ 1, j + 1 = fi, j,

where,

α∗j =
1

1 + r∆t

(
− ∆t

2∆G
(r − q − σ2

2
) +

∆t

2∆G2
σ2

)
,

β∗j =
1

1 + r∆t

(
1− ∆t

2∆G2
σ2

)
,

γ∗j =
1

1 + r∆t

(
∆t

2∆G
(r − q − σ2

2
) +

∆t

2∆G2
σ2

)
.

Note that this change of variables method has eliminated dependency on j for all our constants.

Thus these are constant for each j as well as all i. This means that they need only be calculated once,

a helpful trait.

We now need to consider the boundary conditions. If we transform the variable it follows we should

transform the boundary conditions. Hence these are now given in Tables 4 and 5.

Boundary European Call European Put

t = T V (S, T ) = max(eSmin + ej∆S − eK , 1) V (S, T ) = max(eK − eSmin − ej∆S , 1)

S = Smin V (Smin, t) = max(eSmin − eK , 1) V (Smin, t) = e−r(T−t)eK

S = Smax V (Smax, t) = max(eSmax − eK , 1) V (Smax, t) = max(eK − eSmax , 1)

Table 4: The conditions at each boundary of the transformed gird for European option
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Boundary American Call American Put

t = T V (S, T ) = max(eSmin + ej∆S − eK , 1) V (S, T ) = max(eK − eSmin − ej∆S , 1)

S = Smin V (Smin, t) = max(eSmin − eK , 1) V (Smin, t) = eK

S = Smax V (Smax, t) = max(eSmax − eK , 1) V (Smax, t) = max(eK − eSmax , 1)

Table 5: The conditions at each boundary of the transformed gird for an American option

5.6 Comparison of Explicit Method to Trinomial Trees

The explicit method is equivalent to the trinomial tree approach. This is due to the mechanics of the

method. The explicit method as seen in (5.4) gives a relationship between the three values at the

next time step (i+ 1)∆t and the value current time step, i,∆t (Hull, 2005, P. 425-427). This can be

seen in Figure 6. Through this graphic it is easily seen how this can be equivalent to trinomial tree

fi,j

fi+1,j+1

fi+1,j−1

fi+1,j

Figure 6: A one step trinomial tree

approaches. We can see that the terms a∗j , b
∗
j and c∗j may be seen as follows:(

−1
2rj∆t+ 1

2σ
2j2∆t

)
Probability that the stock price decreases in time ∆t

from j∆S to (j − 1)∆S,

(
1− σ2j2∆t

)
Probability that the stock price is constant in time ∆t

remaining at j∆S,

(
1
2rj∆t+ 1

2σ
2j2∆t

)
Probability that the stock price increases in time ∆t

from j∆S to (j + 1)∆S.

One may be inclined to say that this would not be possible, as the value of S0 increase by expo-

nentiation of either u or d. Thus the partitioning grid would have to be non-linear. We deal with this

by performing the change of variables as seen in Section 5.5. Then we may use a linearly increasing

grid.

6 Sensitivities of Financial Derivatives and their Numerical Estima-

tion

There are a number of derivatives that are of interest to us. These pertain to how the price of the

option, f , changes with respect to the different factors that affect it (Hull, 2005, Chap. 15). These
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changes are termed “Greeks” due to the Greek letters that refer to them, the three most common are

Delta, Theta and Gamma. These are defined as,

6.1 Delta, Theta and Gamma

Definition 6.1 (Delta, Theta and Gamma). Delta, ∆, is a measure of the rate of change of the

options calculated value, f , with respect to the change of the underlying assets price, S. I.e.

∆ =
∂f

∂S
.

Theta, Θ, is a measure of f with respect to the passage of time, t. This is sometimes referred to as

the time decay of the value of the option. I.e.

Θ = −∂f
∂t
.

Gamma, Γ, is a measure of the rate of change of ∆ with respect to the price of the underlying asset.

It could be thought of as the Delta of Delta. I.e.

Γ =
∂∆

∂S
=
∂2f

∂S2
.

6.1.1 Relationship Between Delta, Theta and Gamma

From the Black-Scholes differential equation we can see a useful relationship between Delta, Theta

and Gamma (Hull, 2005, Chap. 359). Delta, Theta, and Gamma are defined as derivatives consider

the Black-Scholes differential equation,

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf.

Note that every derivative is a Greek. Thus by direct substitution we have,

Θ + rS∆ +
1

2
σ2S2Γ = rf.. (55)

(a) The relationship between

Theta and Gamma when their

values are small

(b) The relationship between

Theta and Gamma when their

values are large

Figure 7: The relationship between Gamma and Theta

Alternatively if we use f as the value of a portfolio, Π and have the analogous definitions Theta,

Delta and Gamma the above still holds for the whole portfolio.
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When we constructed the ideas for a binomial tree for one step we stipulated that the portfolio

should be riskless. Stating that the up and down values of the portfolio should be equal, this is also

known as creating a delta-neutral portfolio. That is we have constructed a portfolio where ∆ = 0. If

this is the case then (55) yields,

Θ +
1

2
σ2S2Γ = rΠ.

Notice that if Theta or Gamma is large then the contribution from the right hand side becomes

negligible. It follows that if Theta is large and positive then Gamma must be large and negative. This

relationship for Theta and Gamma can be seen in Figure 7b; furthermore we may see the lack of this

correlation in Figure 7a. This will become useful to us as we investigate the performance of these

methods in later sections.

6.2 Vega

The other most used Greek is Vega. This is defined as below.

Definition 6.2 (Vega). Vega, ν, is the derivative of the value of the option with respect to its volatility,

σ. I.e.

ν =
∂f

∂σ
.

It is easy to see why these are not as popular as some of the other Greeks. Knowing the change

of option price with respect to the stock price is obviously more likely to be useful than that of the

risk-free interest rate.

These Greeks are seldom exactly calculable, as a general formula for f is not often readily available.

As such it is often the case that we must estimate these using numerical methods just as we must solve

the Black-Scholes equation using numerical methods. The next section details how we may estimate

the Greeks through the methods we have discussed insofar.

6.3 Estimation of Greeks

6.3.1 Estimation of Greeks Through Black-Scholes

Due to the existence of the solution of the Black-Scholes differential equation for European options

it is simple to differentiate our solution to obtain exact formulae for the calculation of the Greeks

(Chriss, 1997, P. 180-181). These can be seen in Table 6. Note here that Φ′(x) is the derivative of

Φ(x) with respect to x,

For other types of options, such as American and Asian, as the Black-Scholes equation does not

admit an analytic solution calculation of the Greeks through analytic formulae is not possible.

6.3.2 Estimation of Greeks Through Monte Carlo

Estimation of Greeks through Monte Carlo must follow a very different tact as we are numerically

finding the value of the option and as such we must needs calculate the Greeks in a different way

(Glasserman, 2003, Chap. 7).

As we shall, see finite difference methods will serve us well and it is through these, that we will

calculate the Greeks for Monte Carlo. The parameters that are required to use Monte Carlo are
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Greek European Call European Put

Delta e−qTΦ(d1) e−qT (Φ(d1)− 1)

Theta −S0Φ′(d1)σe−qT

2
√
T

−S0Φ′(d1)σe−qT

2
√
T

−rKe−rTΦ(d2) + qS0Φ(d1)e−qT +rKe−rTΦ(−d2)− qS0Φ(−d1)e−qT

Gamma Φ′(d1)e−qT

S0σ
√
T

Φ′(d1)e−qT

S0σ
√
T

Vega S0

√
TΦ′(d1)e−qT S0

√
TΦ′(d1)e−qT

Table 6: The exact formula for the Greeks for European options

σ, r, S0, T from (3.2.1), along with the number of replications. Then we may calculate the Greek Delta

in the following method,

1. Simulate N option prices C(σ, r, S0, T ),

2. Simulate a further N option prices slightly incremented C(σ, r, S0 + ∆S, T ) = Ci,

3. Calculate the average of these in the usual way C
i

and C,

4. Gain a finite difference approximation using these values.

Obviously we may choose to increment σ, S0 or T to gain our approximations for ν,∆ or Γ, and

Θ respectively. For Delta, Theta and Vega we may use a central difference approximation, forward

difference or backward difference. Each of these has its own advantages and disadvantages but notice

that for Gamma, as in Section 5, we need to use a central difference approximation. So we have that

Gamma is given by,

Γ ≈ Ĉ(σ, r, S0 + ∆S, T )− 2Ĉ(σ, r, S0, T ) + Ĉ(σ, r, S0 −∆S, T )

∆S2
.

For the other Greeks depending on the difference approximation used we obtain different formulae.

Consider a forward difference approximation of Delta denoted ∆F , then we have that,

∆F =
C(S0 + ∆S)− C(S0)

∆S
,

removing the other parameters as we need not consider them. Then it follows that, if α(S) = E[∆F ],

E[∆F ] = ∆S−1
0 (α(S0 + ∆S)− α).

Then if α(S0) is twice differentiable at S0, then using a Taylor expansion of order o(∆S2) we have

that,

Bias(∆F ) = E[∆F − α′(S0)] =
1

2
α′′(S0)h+ o(h).

Following an similar argument we may show that,

Bias[∆C ] =
1

6
α′′′(S0)∆S2 + o(∆S2).

Then it follows that the variance of a forward difference estimator is,

Var[∆F ] = ∆S2Var[C(S0 + ∆S0)− C(S0)].
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Then Var[C(S0 + ∆S0) − C(S0)] = 1
nVar[C(S0 + ∆S0) − C(S0)] is either O(1) if we sample using

different random numbers. Then,

Var(∆β) =
σ2

n∆S2
+ o(∆S−2)

Bias(∆β) = b∆Sβ + o(∆Sβ),

for some non-zero b and taking β = 1 for the forward difference case and β = 2 for the central difference

case. Then consider a ∆S of the form ∆nS = ∆S∗n
−γ for some positive ∆S∗ and where ∆n is the

estimated value of Delta from a Monte Carlo simulation using n paths. It can be shown that the

optimal γ is 1
2β+2 . Then we have our mean square error for a general Delta is given by,

MSE(∆) = b2∆S2β
n +

σ2

n∆S2
n

.

Taking the square root of this yields the root mean square error, RMSE. This is a good measure of

convergence, so taking using ∆nS = ∆S∗n
−γ with our value ofγ we see that,

RMSE(∆) = O
(
n
− β

2β+2

)
.

So the rates of convergence for the forward and central difference methods are O(n−1/4) and O(n−1/3).

Furthermore it can be shown with a little more analysis that the optimal ∆S in for each of these

methods is ∆S−4 ∼ n for the forward difference case and ∆S−6 ∼ n for the central difference case,

from the optimal γ and the appropriate values of β.

6.3.3 Estimation of Greeks Through Trees

We may estimate the Greeks from binomial trees using finite difference methods (Hull, 2005, P. 397-

398). This allows us to evaluate the Greeks at each node. Consider a tree constructed as in Figure 8.

Then at the node denoted S0u
idj let fi,j be the payoff of the option at that point. Thus at time step

i + j, and the stock price be Si,j . Then we further denote ∆i,j to be the value of Delta at the node

with the stock value S0u
idj . Then we can estimate Delta at that point using the difference between

the two nodes that emanate from our point. Thus we would have,

∆i,j =
fi+1,j − fi,j+1

Si+1,j − Si,j+1
. (56)

S0

S0u

S0d

S0ud

S0u
2

S0d
2

Figure 8: A two step binomial tree with stock prices given at each node
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Using this method we may also calculate some of the other Greeks. As Gamma is the second

derivative of with respect to stock price, we need to go two steps forward to calculate Delta at a given

step before the node. Then we may calculate Gamma at the node we are considering. Thus it follows

that,

Γi,j =
[(fi+2,j − fi+1,j+1)/(Si+2,j − Si+1,j+1)] + [(fi+1,j+1 − fi,j+2)/(Si+1,j+1 − Si,j+2)]

1
2(Si+2,j − Si,j+2)

.

For Theta if ud = 1 is fulfilled then we have that the option price is the same at nodes fi,j and

fi+1,j+1 the only factor that would have affected the price of the option is time. Thus we may use the

finite difference approximation and the definition of Theta to see that,

Θi,j = −fi,j − fi+1,j+1

2∆t

=
fi+1,j+1 − fi,j

2∆t

where ∆t is the time between steps.

If ud = 1 is not fulfilled then Rubinstein (1994) found using the relationship between ∆,Θ and Γ

as is (55) we must have,

Θi,j = rfi,j − (r − q)Si,j∆i,j −
1

2
σ2S2

i,jΓi,j . (57)

For Vega we must assume a small change in σ. Let fi,j(σ) = Si,j with u and d as defined by our

model. Then fi,j(σ+0.01) = Si,j would be the same with u and d calculated with a very small change.

Hence using another finite difference approximation we may calculate Vega in the following way,

νi,j =
fi,j(σ + 0.01)− fi,j(σ)

0.01
.

Here we have used 0.01 as a small change however any small value may be taken.

6.3.4 Estimation of Greeks Through Finite Difference Methods

The idea for approximating the Greeks can be extended from the way they are estimated from trees

to finite difference methods in a simple way (Hull, 2005, P. 430). Once we have calculated all of the

values then we may employ exactly the same method as from the tree estimation. For a point (i, j)

in the partition, the same formulae hold.

Obviously here we have never stipulated that ud = 1 need be a condition. As such (57) does not

hold. Thus the equations for our Greeks are the same as trees. Though now for us to estimate ν, as

u and d are not readily available we must instead calculate the values for aj , bj and cj for a slightly

different σ, say σ + 0.01. Then our formula for ν as before holds.

7 Implementation of Numerical Methods and Investigation of their

Performance

In this section we will discuss the implementation of the methods previously described and their

performance under certain conditions. To implement these methods MatLab was chosen. This is for
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a number of reasons; MatLab has many functions built in that we may use, such as the cumulative

normal distribution function. Furthermore unlike some programing languages, such as Visual Basic,

it allows us to view arrays as vectors and perform vector operations with them. As we will see later

on in this section this will be invaluable for calculating option prices using binomial trees or finite

difference methods.

7.1 European Options

7.1.1 Black-Scholes

We have developed an analytic formula for the price of a European option through the solution of the

Black-Scholes differential equation. Implementing this is easy as we merely have to calculate d1 and

d2, test whether the option is a call or put so that we may use the appropriate formula and finally

implement the formula using the command “normcdf(d1)” to calculate Φ(d1) or the required variable

we need to take the cumulative normal distribution function we are considering. The code for this may

be found in Appendix A.1. As this formula is analytic it is helpful for us to compare the performance

of our other methods. This is how this will be used herein.

7.1.2 Binomial Trees

Before we discuss the implementation of this method it is useful for us to make the following observa-

tions.

To begin note that there are some tricks we may employ to make things easier. Notice that for

a binomial tree once we have calculated u and d appropriately regardless of the model or parameters

entered the method remains the same. As such we, for European options, we use Appendix C.1.3 as

a hub program that calculates the appropriate u and d and then merely calls Appendix C.1.1 which

is our method using the general formula. Alternatively we could calculate this by using our back

stepping method as in Appendix C.1.2.

Also note that to calculate Greeks we must use vectors. We generate the vector of stock prices

at the terminal time, T , then shift the vectors so that the values that are needed to calculate the

previous nodes’ value are aligned. Then we may use our formula and loop back through to obtain our

initial option price. Then we can use the values to calculate the value of the Greeks at each node.

We have talked about how Binomial Trees converge to the Black-Scholes formula in the case of

European options. We may see this in Figure 9a. We see that as the number of steps increase the

error decreases quickly.

We now investigate the performance of these methods. In Section 6 we discussed the Greek, which

are measures of how the price changes with respect to different factors. It therefore makes sense for us

to investigate how the price of the option changes with respect to these. This will allow us to evaluate

the robustness of our models.

To begin with we consider Delta. We have already discussed how these are estimated in Section

6.3.3. The best way to evaluate the performance of binomial trees is to choose a ε > 0 then evaluate

the number of steps required to find the price of the option to this level of accuracy. We may do this by

comparing the value obtained by a Binomial Tree approach to the value found from the Black-Scholes

formula. This allows us to see how the value of Delta affects the efficiency of the method.

For us to be able to do this we need to be able to change Delta. Notice that as u increases,

Delta increases. As the numerator increases more than the denominator does. So we affect Delta
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(a) A normal plot of the error

when using a binomial tree ap-

proximation

(b) A Log-Log plot of the error

when using a binomial tree ap-

proximation

Figure 9: The error of a binomial tree approximation

by increasing σ then use the method we just developed to see how Delta affects the number of steps

needed. Using this method we generate the graphs as seen in Figures 10a-10c.

(a) r = 0.12, K = 48, S0 = 40 (b) r = 0.04, K = 22, S0 = 20 (c) r = 0.02, K = 102, S0 = 100

Figure 10: The number of steps required to achieve an error tolerance as Delta varies

Each of these graphs is generated with different r, S0 and K. We see that there is no correlation

between these and therefore no correlation in general. It is important to understand that we do not

affect directly. To cause our change in Delta we use the formula for Delta from Table 6. Notice that

from (10) as σ decreases d1 increases meaning that Φ(d1) increases. This causes Delta to increase. So

by changing σ is how we affect Delta in Figure 10a - 10c.

We see from these graphs that there is no correlation between the value of Delta and the number

of steps it requires to calculate the price accurate to a certain value. This shows that the convergence

of the method is unaffected by Delta. Computationally speaking this is beneficial. We are able to

price an option with the same amount of steps as an equivalent option with a higher Delta. Note that

this does not mean that there is no correlation between the price and Delta. Furthermore we may see

that as there is no correlation here it follows that there is no correlation between the convergence and

Gamma, as Gamma is the derivative of Delta with respect to Theta.

Finally notice that in Figure 10c all the Deltas are negative. This is because this was done with

a put. Notice that from our formula for the estimation of Delta from (56) for a call the numerator is

always positive and for a put it is always negative, whilst the denominator is always positive.

MA4XA 44 Dr. A. Chernov



Numerical and Analytic Methods in Option Pricing D. Edwards

7.1.3 Trinomial Trees

We shall not consider the performance of these, as they are redundant. This is due to their equivalence

to the explicit finite difference method, so all conclusions we draw for the explicit finite difference

method apply to trinomial trees. However note that they may be implemented in a very similar way

to binomial trees, using vectors and looping to backdate to our initial time, to find the value of the

option. The code for this method for European options can be seen in Appendix D.1.1. Notice that

again once u and d are calculated the algorithm is identical, so we may use a source program. This

can be seen in Appendix D.1.2.

Finally notice that the algorithm for a European and American option is similar, the only difference

being the need to see if early exercise is optimal after we backdate a step. Thus these algorithms are

near identical as can be seen in Appendices D.1.1 and D.2.1. Again, we may use a source program

given in Appendix D.2.2.

7.1.4 Monte Carlo

For the Monte Carlo methods in Section 3.1 we have essentially already formed our algorithm. It is

merely a case of encoding these using the appropriate functions. This can be seen in Appendix B.1.1.

The first question is of convergence. We have remarked that Monte Carlo converges to the analytic

solution given by the Black-Scholes formula. In Figure 11a-11c we see this behavior. Notice that in

Figure 11a and 11b the convergence is different. This is due to the random component, as the random

numbers were different for these sets of simulations, it generates different graphs.

(a) Convergence to the value

given by the analytic solution for

European options

(b) Convergence to the value

given by Black-Scholes with dif-

ferent random numbers

(c) The error between the Black-

Scholes value and Monte Carlo es-

timate

Figure 11: Convergence of Monte Carlo to the Analytic solution for European options

Now consider antithetic variates. When implementing this we use a small trick. As described in

Section 3.3.2 we may generate secondary paths by choosing the random numbers to be the negative

of the random numbers for the usual set of paths. This saves us a lot computational time and further

relaxes the condition that Cov[Yi, Ŷi] < 0.

In Figure 12a we see the convergence of Monte Carlo to the option price. Note that it is erratic,

due to the random numbers; this is why we sample a large amount of times. Figure 12b shows the

error of each of the two methods as the number of replications increases. We see here how much the

antithetic variance reduction technique reduces our error, this is even more greatly seen in Figure

12c. Here we see how many replications are required to gain a certain error tolerance. Notice that

the normal method requires a thousand or more replications to find the correct price at the lower
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error estimates. Helpfully the antithetic variate technique does not require as many paths, in one case

requiring one ninth of the paths of the normal method.

(a) r = 0.04, K = 22 and S0 = 20 (b) r = 0.12, K = 48 and S0 = 40 (c) r = 0.04, K = 22 and S0 = 20

Figure 12: Convergence of Monte Carlo methods to the Analytic solution for European options

As stated earlier the requirement for the covariance being less than zero is more relaxed as we do

not simulate 2n paths for the variance reduced method due to our trick. This is seen as the covariance

in the graph above is only slightly smaller than zero with the covariance being negative and of order

10−3 in general. This shows how beneficial our method can be.

As we mentioned earlier Monte Carlo is not particularly competitive for European options. This

can be seen as the error in Figure 12b once below 0.1 is erratic and in general much higher than in

the binomial tree approximation given in Figure 9a. The key difference here is that we have need to

simulate 500− 1000 paths to achieve this in Monte Carlo, and then only the variance reduced method

achieved this error tolerance and not for the normal method, however we achieve better than this with

a 50 step binomial tree. This shows us how bad this method is as both of these programs are O(n)

as can be seen in their respective codes, Appendices B.1.1, B.1.2 and C.1.4. The reason is we needed

the Greeks when we generated our binomial tree graph hence the use of this code. We now see how

this method compares to finite difference methods.

7.1.5 Finite Difference Methods

For the finite difference method we use different approaches for the implicit and explicit methods. For

the explicit method, due to the nature of it being equivalent to the trinomial tree approach we may

implement using a similar method for the trinomial trees; vector operations. We need only add the

appropriate boundary conditions in.

For the implicit method we need another approach. We may use the Thomas Algorithm to help us

implement this problem. This has the effect of solving the equations in O(MN) instead of O(M2N2)

required by Gaussian elimination. To see how we implement this consider the Thomas Algorithm.

This is a method for solving tridiagonal matrices.

Given the tridiagonal matrix as A in Section 5.3 multiplied by X = (x1, x2, . . . , xn)T and a vector

MA4XA 46 Dr. A. Chernov



Numerical and Analytic Methods in Option Pricing D. Edwards

of knowns, D = (d1, . . . , dn)T , we perform the following transformation,

c′i =


ci

bi
; i = 1

ci

bi − aic′i−1

; i = 2, 3, . . . , n− 1

d′i =


di

bi
; i = 1

di − aid′i−1

bi − aic′i−1

; i = 2, 3, . . . , n.

This has the bonus of eliminating the ai so that ai = 0 ∀i and transforming the bi so that bi = 1 ∀i.
Thus we may then solve this system of equations through backwards substitution.

xn = d′n

xi = d′i − c′ixi+1 ; i = n− 1, n− 2, . . . , 1

We apply this to our system as seen in Section 5.3 by saying Fi = X and D = Fi+1 +Bi. We may

now implement this method again using vector operations to reduce computing time. We do this for

each iteration step, going backwards until the initial value found at the start is found.

We need to compare the performance of these two methods separately. This is because the explicit

method, as seen in Section 5.6, is equivalent to trinomial trees. The implicit method is very different

to trinomial tress using the Thomas Algorithm to solve this. This means that due to the large amount

of work required for the implicit method, that is not used in the explicit method, we expect this to

require more time to achieve the same error tolerance.

(a) Convergence to the value

given by the analytic solution for

European options

(b) Number of partitions for a

given error tolerance with large

M and n and with M = N

(c) Number of partitions for a

given error tolerance with small

M and n and with M = N

Figure 13: Convergence of finite difference methods to Convergence of Monte Carlo to the Analytic

solution for European options

We can see this as if we time each method in Appendices E.1.1 and E.1.2 for say N = M = 50

the implicit method requires twice as much time as the explicit method to achieve the same error

tolerance level. We also see that in Figures 13b and 13c the number of rectangles we partition into

(choosing M = N so that the x-axis is the square root of the number of rectangles used) to gain a

given error tolerance is vastly more for lower error tolerances than the explicit method. This is due

to the implicit method being O(∆t,∆S2) while the explicit method is O(∆t2,∆S2).
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This shows the behavior we see in Figures 13b and 13c. In the second of these we see for ∆t

and ∆S larger these have similar convergence, however as ∆t → 0 the number of rectangles needed

increases greatly. As in the graphs we have taken M = N this causes the vast increase as our error

tolerance decreases.

Lastly see that these orders of convergence show that error of the explicit method is less than the

error of the implicit method for the same given M and N . This can be seen in Figure 13a, showing

that in general as we increases the number of rectangles the error of the explicit method has a lower

error than the implicit method. It is important to see that all of these result hold for American options

which can be seen in the next section.

7.2 American Options

We shall only investigate the performance of the method we have discuses for American options.

While some that we have discussed may be adapted to American options, we have not looked at how

these may be adapted and as such shall not consider them here. We only considering finite difference

methods and binomial trees for which we have developed models for American options.

7.2.1 Binomial Trees

For an American option our implementation is near identical to the vector implementation of European

options seen in Appendix C.1.2. As can be seen in AppendixC.2.1 the only minor alteration is having

to, after calculating the value at the previous nodes, take the maximum of these and the possible payoff

for early exercise. Further again we may use a source program to allow for more user input as seen in

Appendix C.2.2. The Greek calculation is again near identical with the only change being taking the

maximum of payoff at the current node and the backward calculated value as seen in Appendix C.2.3.

The model is developed in the same way, meaning that all of the conclusions we discussed in Section

7.1.2 still hold. We shall therefore investigate how this method performs when different Greeks change.

As when we explored Delta in Section 7.1.2 we may not change Theta directly. Note that for

European options from Table 6 we see that as σ increases Theta decreases. Thus we shall take the

same approach changing σ slowly to observe the behavior of the price of the option as Theta changes.

We first examine the price of American options against the price of European options.

(a) Option price of equivalent

American and European options

(b) Option price compared to the

value of Delta

(c) Option Price compared to the

value of Theta

Figure 14: American options compared to the Greeks and European options

From Figure 14a we see that the price of an American option is always greater than the equivalent

European option. The above is obviously only for a given r, S0, T and K, however this is a trend we
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expect to see. The reason for this is that an American option is always more valuable than a European

option. This is because the owner of an American option has every chance the owner of a European

option has to exercise and more. This fairly obviously makes the option more valuable.

We see that there is a definite correlation between Theta and Delta and the price of the option. In

Figure we observe that 14b the higher Delta is the higher the price of the option. This from the same

line of reasoning as to why we expect the volatility to increase the value of an option as discussed in

Section 2.1. This is because as the rate the stock price changes increases if the stock price goes up

we are likely to make a profit. However if it decreases severely our loses are bounded by the price of

the option. Hence we want this to be as big as possible. Further note that the gradient of the line is

increasing. This means that as Gamma increases the stock price increases as well. The reason for this

follows similar logic to that of Gamma.

Furthermore we see in Figure 14c that as Theta increases the price of the option decreases. This

is because Theta is a measure of the time decay of the option price. As such we wish for this to be as

small as possible; the faster the price decays the less the option is worth.

Again note that from our formula for the approximation of these Greeks we see that the above is

for calls. As for puts both Theta and Delta would be negative.

(a) The price of an American op-

tion compared to the value of

Vega

(b) The price of a European op-

tion compared to the value of

Vega

Figure 15: American and European option as Vega varies, if early exercise is optimal

In Figures 15a and 15b we see that there is a general correlation between the European option and

Vega. In general we have that as Vega increases the price of the option decreases. This is because if

σ is changing rapidly it does not guarantee that it will be larger, which will increase our price.

The lack of correlation seen in Figure 15a is not necessarily a trend as seen in Figures 16a and

16b. Here the relationship between Vega and the option price is identical for European and American

options. The lack of correlation seen in Figure 15a is due to early exercise, as it is optimal here,

however in Figure 16a it is not leading to the presence of correlation. As when we exercise early σ

plays a less significant role, due to the option acting over a shorter time. This is as when we exercise

early for a binomial tree we multiply by u and d less, meaning σ has less impact when we exercise

early. Thus we expect that Vega would have less impact when we exercise early, resulting in our

lack of correlation. Alternatively when we do not exercise early, the relationship is near identical to

European options.
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(a) American option compared to

Vega when early exercise is never

optimal

(b) European option compared to

Vega where early exercise is no

possible

Figure 16: American and European option as Vega varies, if early exercise is never optimal

7.2.2 Finite Difference Methods

This is identical in both cases to the European option implementation. Again the only difference

between the American and European case is we need to consider early exercise, this can be seen in

Appendices E.2.1 and E.2.2. In the case of the implicit method we need compare the values of Fi we

have found to the values that would be given by early exercise at this point.

In the case of the explicit method this is essentially the same. Though in the formation of the

problem we never defined a Fi it is helpful to do so in implementing this. As explained in the European

case it is advantageous to do this using vectors. The method is identical for the American case however

we now only do the comparison as above. All of the conclusions we drew from Section 7.1.5 still hold.

(a) The value of an American op-

tion compared to a European op-

tion approximated using the im-

plicit method

(b) The value of an American op-

tion compared to a European op-

tion approximated using the ex-

plicit method

Figure 17: Price of an American option compared to a European option using different finite difference

approximations

We may see in Figure 17a for the implicit method we still have that American options are more

valuable than European options. This is again echoed in Figure 17b for the explicit method.

Furthermore all of our analysis for European options hold. Note here that we would observe the

same behavior w.r.t. Vega here as before due to early exercise.

As these options are so similar to European options, we see that there are not many new conclusions

we can draw from these. We now consider a very different type of option; Asian options.
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7.3 Asian Options

As with American options we only consider here the numerical method that we have applied to Asian

options in our development in the theory. Thus we only consider Monte Carlo, so we shall see how

the different types of Monte Carlo we developed perform.

7.3.1 Monte Carlo

As with the European case the algorithms we are using are known from Section 3.2.3. The implemen-

tation the normal, antithetic and control variate techniques can be seen in Appendices B.2.1, B.2.2

and B.2.3 respectively. Thus we need only consider how these perform.

(a) Option price of equivalent

American and European options

(b) Option price compared to the

value of Delta

(c) Option Price compared to the

value of Theta

Figure 18: Different Variance reduction techniques and their affect on a Monte Carlo approximation

We see in Figures 18a and 18b that both of these variance reduction techniques improve on the

normal Monte Carlo estimates. So the natural question is that of which is best. If one is not always

optimal, under what circumstances is each better in.

In Figure 18c we see that the antithetic variance reduction techniques is much better in the given

case. The way in which the antithetic values technique reduces variance is always the same and always

improves the precision. However, consider if the price of an Asian option is very close to that of a

geometric average option. In this case the control variate will bring the price much closer much quicker

as the error correction is nearly exactly accurate. Thus if this was the case we would expect to see

the control variate technique out perform the antithetic values technique.

Now we seek to examine the performance of the estimation of Greeks. In Section 6.3.2 we considered

that convergence of two different methods of estimating Delta.

We see in Figure 19a the value of Delta compared to n, the number of paths. We showed in Section

6.3.2 that as the number of paths increases Delta should converge approximately like n−1/4. We see

this Figure 19a as the estimations of Delta seem to follow roughly the same behavior.

Furthermore we stipulated that for the central difference method the convergence should behave

like n−1/6. This is demonstrated in Figure 19b where we see the estimation seems to follow the same

path roughly. Note that in Figures 19a and 19b are generated with antithetic values. This is as for the

option this graph was generated from, the method had reduced variance more showing the correlation

more clearly.

Here ends our discussion of numerical and analytic methods in option pricing. Having developed

our key ideas such as; the Black-Scholes differential equation, Black-Scholes formula for European

options, Mont Carlo methods, binomial trees, finite difference methods and the Greeks and their
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(a) Convergence of Delta using a

forward difference approximation

(b) Convergence of Delta using a

central difference approximation

Figure 19: Convergence of Delta using as estimated from a Monte Carlo approximation

numerical estimation we have implemented these and discussed how they perform under certain cir-

cumstances. This has led us to some interesting insights as to which methods are best in given

scenarios and how we may improve them. We have further seen the convergence of many methods

and convergence of approximations of Greeks with these methods. While our study or investigation

has by no means be exhaustive it has given us an interesting insight into the field of option pricing
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Appendix A Black-Scholes

A.1 Black-Scholes Model MatLab Code

f unc t i on Value=BlackScholesE ( s 0 , K, r , T, sigma , type , q )

%% This i s a func t i on to c a l c u l a t e the value o f a European opt ion

% us ing the c l o s e d f o r s o l u t i o n f o r the value .

%% Inputs :

% s 0 = i n t i a l s tock p r i c e

% K = s t r i k e p r i c e

% r = r i s k f r e e i n t r e s t r a t e

% T = time per iod the opt ion i s over

% sigma = v o l a i l i t y o f the s tock

% type = e i t h e r c a l l ( ’C’ ) or put ( ’P ’ )

% q = amount o f d iv idends to be paid during opt ions l i f e t i m e

%% Calcu la te d 1 an d 2 ,

a = log ( s 0 /K) ;

b = ( r−q + ( sigma ˆ2) /2) ;

c= sigma∗ s q r t (T) ;

d 1 = ( a + b∗T) /( c ) ;

d 2 = d 1 − sigma∗ s q r t (T) ;

%% Determine weather the opt ion i s c a l l or put

i f strcmp ( type , ’C’ ) == 1 ;

%% Calcu la te N( d 1 ) and N( d 2 )

n 1 = normcdf ( d 1 ) ;

n 2 = normcdf ( d 2 ) ;

%c a l c u l a t e the value o f the opt ion

Value = exp(−q∗T) ∗ s 0 ∗n 1 − K∗exp(−r ∗T) ∗n 2 ;

e l s e

%% Calcu la te N( d 1 ) and N( d 2 )

n 2 = normcdf(−d 2 ) ;

n 1 = normcdf(−d 1 ) ;

%c a l c u l a t e the value o f the opt ion

Value = K∗exp(−r ∗T) ∗n 2 − s 0 ∗n 1∗exp(−q∗T) ;

end

MA4XA 54 Dr. A. Chernov



Numerical and Analytic Methods in Option Pricing D. Edwards

Appendix B Monte Carlo

B.1 European

B.1.1 Monte Carlo MatLab Code

f unc t i on Value = MonteCarloE ( S 0 , r , sigma ,T,K,N, type )

%% This i s a func t i on to use a monte c a r l o method to approximate the

↪→ value

% of a European opt ion .

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% N − number o f t imes we s imulate

% type − e i t h e r ”C” f o r c a l l or ”P” f o r put

%% Generate our random numbers

X = ze ro s (N, 1 ) ;

Y= ones (N, 1 ) ;

Z = normrnd (X,Y) ;

%% We then f o r c a s t to the end o f the time per iod

S T = ze ro s (N, 1 ) ;

f o r i = 1 :N

S T ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗T + sigma∗ s q r t (T) ∗Z( i , 1 ) ) ) ;

end

%% Now we c a l c u l a t e the payo f f at the end po int

i f strcmp ( type , ’C’ ) == 1 ;

S T = max(S T−K, 0 ) ;

e l s e

S T = max(K−S T , 0 ) ;

end

%% Calcu la te the average

S = 0 ;

f o r i = 1 :N;

S = S + S T ( i , 1 ) ;
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end

Sbar= (1/N) ∗S ;

%% Discount to the i n i t a l time and we have our p r i c e

Value = exp(−r ∗T) ∗Sbar ;

B.1.2 Monte Carlo Antithetic MatLab Code

f unc t i on Value = MonteCarloEAnithetic ( S 0 , r , sigma ,T,K,N, type )

%% This i s a func t i on to use a monte c a r l o method to approximate the

↪→ value

% of a European option , with a a n t i t h e t i c var i ance reduct ion techn ique .

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% N − number o f t imes we s imulate

% type − e i t h e r ”C” f o r c a l l or ”P” f o r put

%% Generate our random numbers

X = ze ro s (N, 1 ) ;

Y= ones (N, 1 ) ;

Z = normrnd (X,Y) ;

%% We now generate our other random va lue s us ing the t r i c k

Zhat = −Z ;

%% We then f o r c a s t to the end o f the time per iod

S T = ze ro s (N, 1 ) ;

S That = ze ro s (N, 1 ) ;

f o r i = 1 :N

S T ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗T + sigma∗ s q r t (T) ∗Z( i , 1 ) ) ) ;

S That ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗T + sigma∗ s q r t (T) ∗Zhat ( i , 1 ) )

↪→ ) ;

end

%% Now we c a l c u l a t e the p a y o f f s at the end po int

i f strcmp ( type , ’C’ ) == 1 ;

S T = max(S T−K, 0 ) ;
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S That = max( S That−K, 0 ) ;

e l s e

S T = max(K−S T , 0 ) ;

S That = max(K−S That , 0 ) ;

end

%% Calcu la te the average o f each v a r i a b l e and the comination o f the two .

S = 0 ;

Shat = 0 ;

f o r i = 1 :N;

S = S + S T ( i , 1 ) ;

Shat = Shat + S That ( i , 1 ) ;

end

Sbar= (1/(2∗N) ) ∗(S + Shat ) ;

S= S/N;

Shat = Shat/N;

%% Discount to the i n i t a l time and we have our p r i c e

Value = exp(−r ∗T) ∗Sbar ;

B.2 Asian

B.2.1 Monte Carlo MatLab Code

f unc t i on Value = MonteCarloA ( S 0 , r , sigma ,T,K,N, type ,M)

%% This i s a func t i on to use a monte c a r l o method to approximate the

↪→ value

% of a Asian opt ion .

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% N − number o f t imes we s imulate

% type − e i t h e r ”C” f o r c a l l or ”P” f o r put

% M− number o f po in t s the average i s be ing sampled at

%% Generate random numbers
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X = ze ro s (N,M) ;

Y= ones (N,M) ;

Z = normrnd (X,Y) ;

dt = T/M;

%% We then f o r c a s t to the end o f the time per iod

S T = ze ro s (N,M) ;

f o r i = 1 :N

S T ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗ s q r t ( dt ) ∗Z( i , 1 ) )

↪→ ) ;

end

f o r j = 2 :M

f o r i = 1 :N

S T ( i , j ) = S T ( i , j−1)∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗ s q r t ( dt ) ∗
↪→ Z( i , j ) ) ) ;

end

end

% Calcu la te the average f o r each path

AvS=ze ro s (N, 1 ) ;

f o r i = 1 :N;

f o r j = 1 :M;

AvS( i , 1 ) = S T ( i , j ) + AvS( i , 1 ) ;

end

end

AvS = AvS + S 0 ;

AvS = AvS . / (M+1) ;

%% Calcu la te the payo f f f o r each path at the end po int

i f strcmp ( type , ’C’ ) == 1 ;

AvS = max(AvS−K, 0 ) ;

e l s e

AvS = max(K−AvS , 0 ) ;

end

%% Calcu la te the average payo f f

AvSS = 0 ;

f o r i = 1 :N;

AvSS = AvSS + AvS( i , 1 ) ;

end

Sbar= (1/N) ∗AvSS ;

%% Discount to the i n i t a l time and we have our p r i c e

Value = exp(−r ∗T) ∗Sbar ;
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B.2.2 Monte Carlo Antithetic MatLab Code

f unc t i on Value = MonteCarloAAntithetic ( S 0 , r , sigma ,T,K,N, type ,M)

%% This i s a func t i on to use a monte c a r l o method to approximate the

↪→ value

% of a Asian option , with a a n t i t h e t i c var iance reduct i on techn ique .

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% N − number o f t imes we s imulate

% type − e i t h e r ”C” f o r c a l l or ”P” f o r put

% M− number o f po in t s the average i s be ing sampled at

%% Generate random numbers

X = ze ro s (N,M) ;

Y= ones (N,M) ;

Z = normrnd (X,Y) ;

dt = T/M;

%% Generate other random numbers us ing our t r i c k

Zhat = −Z ;

%% We then f o r c a s t to the end o f the time per iod

S T = ze ro s (N,M) ;

S That = ze ro s (N,M) ;

f o r i = 1 :N

S T ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗ s q r t ( dt ) ∗Z( i , 1 ) )

↪→ ) ;

S That ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗ s q r t ( dt ) ∗Zhat

↪→ ( i , 1 ) ) ) ;

end

f o r j = 2 :M

f o r i = 1 :N

S T ( i , j ) = S T ( i , j−1)∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗ s q r t ( dt ) ∗
↪→ Z( i , j ) ) ) ;

S That ( i , j ) = S That ( i , j−1)∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗
↪→ s q r t ( dt ) ∗Zhat ( i , j ) ) ) ;

end
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end

%% Calcu la te the average f o r each path

AvS=ze ro s (N, 1 ) ;

AvShat=ze ro s (N, 1 ) ;

f o r i = 1 :N;

f o r j = 1 :M;

AvS( i , 1 ) = S T ( i , j ) + AvS( i , 1 ) ;

AvShat ( i , 1 ) = S That ( i , j ) + AvShat ( i , 1 ) ;

end

end

AvS = AvS + S 0 ;

AvShat = AvShat + S 0 ;

AvS = AvS . / (M+1) ;

AvShat = AvShat . / (M+1) ;

%% Calcu la te the payo f f f o r each path

i f strcmp ( type , ’C’ ) == 1 ;

AvS = max(AvS−K, 0 ) ;

AvShat = max( AvShat−K, 0 ) ;

e l s e

AvS = max(K−AvS , 0 ) ;

AvShat = max(K−AvShat , 0 ) ;

end

%% Calcu la te the average payo f f

AvSS = 0 ;

AvSShat=0;

f o r i = 1 :N;

AvSS = AvSS + AvS( i , 1 ) ;

AvSShat = AvSShat + AvShat ( i , 1 ) ;

end

Sbar= (1/(2∗N) ) ∗(AvSS+AvSShat ) ;

%% Discount to the i n i t a l time and we have our p r i c e

Value = exp(−r ∗T) ∗Sbar ;

B.2.3 Monte Carlo Control Variate MatLab Code

f unc t i on Value = MonteCarloAControlVariate ( S 0 , r , sigma ,T,K,N, type ,M)

%% This i s a func t i on to use a monte c a r l o method to approximate the

↪→ value

% of a Asian option , with a c o n t r o l v a r i a t e var i ance reduct ion techn ique .
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%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% N − number o f t imes we s imulate

% type − e i t h e r ”C” f o r c a l l or ”P” f o r put

% M− number o f po in t s the average i s be ing sampled at

% ( not i n c l u d i n g the s t a r t po int )

%% Generate random numbers

X = ze ro s (N,M) ;

Y= ones (N,M) ;

Z = normrnd (X,Y) ;

dt = T/M;

%% We then f o r c a s t to the end o f the time per iod

S T = ze ro s (N,M) ;

f o r i = 1 :N

S T ( i , 1 ) = S 0 ∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + sigma∗ s q r t ( dt ) ∗Z( i , 1 ) )

↪→ ) ;

end

f o r j = 2 :M

f o r i = 1 :N

S T ( i , j ) = S T ( i , j−1)∗( exp ( ( r − 0 .5∗ sigma ˆ2) ∗dt + . . .

sigma∗ s q r t ( dt ) ∗Z( i , j ) ) ) ;

end

end

%% Calcu la te mu and sigmahat ˆ2

sigmahat2 =0;

f o r i = 1 :M

sigmahat2 = sigmahat2 +(2∗ i −1)∗(M+1− i ) ∗dt ;

end

sigmahat2 = sigmahat2 ∗ ( ( sigma ˆ2) /(Mˆ2∗T) ) ;

d = 0.5∗ sigma ˆ2 − 0 .5∗ sigmahat2 ;

mu = r−d ;

%% Now cont inue to f o r c a s t us ing mu and sigmahat ˆ2 .

S TG = ze ro s (N,M) ;

f o r i = 1 :N
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S TG( i , 1 ) = S 0 ∗( exp ( (mu − 0 .5∗ sigmahat2 ) ∗dt + s q r t ( sigmahat2 ) . . .

∗ s q r t ( dt ) ∗Z( i , 1 ) ) ) ;

end

f o r j = 2 :M

f o r i = 1 :N

S TG( i , j ) = S TG( i , j−1)∗( exp ( (mu − 0 .5∗ sigmahat2 ) ∗dt + . . .

s q r t ( sigmahat2 ) ∗ s q r t ( dt ) ∗Z( i , 1 ) ) ) ;

end

end

% We now c a l c u l a t e the average f o r each path

AvS=ze ro s (N, 1 ) ;

AvSG=ze ro s (N, 1 ) ;

f o r i = 1 :N;

f o r j = 1 :M;

AvS( i , 1 ) = S T ( i , j ) + AvS( i , 1 ) ;

AvSG( i , 1 ) = S TG( i , j ) + AvSG( i , 1 ) ;

end

end

AvS = AvS + S 0 ;

AvS = AvS . / (M+1) ;

AvSG = AvSG + S 0 ;

AvSG = AvSG. / (M+1) ;

%% Now we c a l c u l a t e the payo f f f o r each path

i f strcmp ( type , ’C’ ) == 1 ;

AvS = max(AvS−K, 0 ) ;

AvSG = max(AvSG−K, 0 ) ;

e l s e

AvS = max(K−AvS , 0 ) ;

AvSG = max(K−AvSG, 0 ) ;

end

%% Calcu la te the average payo f f

AvSS = 0 ;

AvSSG = 0 ;

f o r i = 1 :N;

AvSS = AvSS + AvS( i , 1 ) ;

AvSSG = AvSSG + AvSG( i , 1 ) ;

end

SbarG= (1/N) ∗AvSSG;

Sbar= (1/N) ∗AvSS ;

%% Calcu la te the value o f the geometr ic average opt ion from the BS
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AnSol=BlackScholesE ( S 0 , K, mu, T, s q r t ( sigmahat2 ) , type ) ;

%% Calcu la te the e r r o r

e r r o r = SbarG − AnSol ;

%% Calcu la te optimal b approimation b∗

numb = (AvS−Sbar ) . ∗ (AvSG−SbarG ) ;

denb = (AvSG−SbarG ) . ˆ 2 ;

num =0;

den =0;

f o r i = 1 :N;

num = num + numb( i , 1 ) ;

den = den + denb ( i , 1 ) ;

end

bstar = num/den ;

%% Calcu la te our adjusted payo f f

P = Sbar − bstar ∗ e r r o r ;

%% Discount to the i n i t a l time and we have our p r i c e

Value = exp(−r ∗T) ∗P;

Appendix C Binomial Trees

C.1 European

C.1.1 Binomial Trees MatLab Code Using General Formula MatLab Code

f unc t i on OptionValue = BinomialTreesCRRE (u , d ,K, s 0 , dt , r , s teps , type )

%% Function to approximate the value o f a European opt ion us ing the

↪→ gene ra l

% formula

%%Inputs :

% u = amount s tock goes up by

% d= amount s tock goes down by

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e

% s t ep s = number o f s t ep s that are to be taken

% type = type o f opt ion being cons idered , e i t h e r C or P f o r c a l l or put

% F i r s t we need to c a l c u l a t e p r o a b i l i t y , f o r CRR t h i s i s g ivn by ,
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%Find p r o b a b i l i t y

R = exp ( r ∗dt ) ;

p = (R − d) /(u − d) ;

%%Def ine end nodes t r e e s i z e

BTree = ze ro s ( s t ep s +1 ,1) ;

%%Generate the end nodes o f the t r e e

f o r j = 0 : s t ep s

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

%%Def ine the p a y o f f t r e e

PayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%%Calcu l tae payo f f at end nodes

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 1 : s t ep s+1

PayOffTree ( j , 1 ) = max( BTree ( j , 1 )−K, 0 ) ;

end

e l s e

f o r j = 1 : s t ep s+1

PayOffTree ( j , 1 ) = max(K−BTree ( j , 1 ) , 0 ) ;

end

end

Value =0;

%%Use the formula to c a l c u l a t e the vaue o f the opt ion .

f o r j = 0 : s t ep s

V = nchoosek ( steps , j ) ∗pˆ j ∗(1−p) ˆ( ( s t ep s )−j ) ;

Value = Value + V∗PayOffTree ( steps−j +1 ,1) ;

end

Value = exp(−r ∗dt∗ s t ep s ) ∗Value ;

OptionValue = Value ;

C.1.2 Binomial Trees MatLab Code Using Vectors MatLab Code

f unc t i on Value = BinomialTreesEVectors (u , d ,K, s 0 , dt , r , s teps , type )

%% Function c a l c u l a t e s the value o f a European opt ion us ing the backward

% stepp ing method

%% Inputs :

% u = amount s tock goes up by

% d= amount s tock goes down by

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e
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% s t ep s = number o f s t ep s that are to be taken

% type = type o f opt ion being cons idered , e i t h e r C or P f o r c a l l or put

% F i r s t we need to c a l c u l a t e p r o a b i l i t y , f o r CRR t h i s i s g ivn by ,

% Current ly only works f o r puts not c a l l s

%% Calcu la te p r o b a b i l i t y

R = exp ( r ∗dt ) ;

p = (R − d) /(u − d) ;

BTree = ze ro s ( s t ep s +1 ,1) ;

%% Generate Binomial t r e e at end step .

f o r j = 0 : s t ep s

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

EPayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%% Find the Payof f f o r the opt ion at the end po int

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 0 : s t ep s

EPayOffTree ( j +1 ,1) = max( BTree ( j +1 ,1)−K, 0 ) ;

end

e l s e

f o r j = 1 : s t ep s+1

EPayOffTree ( j , 1 ) = max(K−BTree ( j , 1 ) , 0 ) ;

end

end

%% Generate the binomial t r e e as a vec to r at s tep ( steps −1)

f o r i = 0 : steps−1

BTree ( i +1 ,1) = s 0 ∗(u ˆ( ( steps −1)− i ) ) ∗dˆ( i ) ;

end

APayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%% At step ( steps −1) the l a s t entry o f the vec to r i s now zero we

% s e t t h i s .

BTree ( s t ep s +1, 1) = 0 ;

%% S h i f t s the payo f f t r e e up one to a l low vec to r ope ra t i on s

EPayOffTree2 = c i r c s h i f t ( EPayOffTree ,[−1 1 ] ) ;

%% Ca l cu l a t e s the value o f a opt ion at prev ious s tep

DiscountedPayOffTree = exp(−r ∗dt ) ∗(p∗EPayOffTree + (1−p) ∗EPayOffTree2

↪→ ) ;

%% As we r e c i v e a c o n t r i b u t i o n from the penult imate term o f the

↪→ vec to r

% to g ive an extra term . Set t h i s to zero .

DiscountedPayOffTree ( s t ep s +1, 1) = 0 ;

APayOffTree = DiscountedPayOffTree ;

f o r j = 2 : s t ep s

BTree= ze ro s ( s i z e ( APayOffTree ) ) ;
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%% Calu late the binomial t r e e at s tep ( steps−j )

f o r i = 0 : steps−j

BTree ( i +1 ,1) = s 0 ∗(u ˆ( ( steps−j )− i ) ) ∗dˆ( i ) ;

end

%% S h i f t s the payo f f t r e e up one to a l low vec to r ope ra t i on s

APayOffTree2 = c i r c s h i f t ( APayOffTree ,[−1 1 ] ) ;

% Ca lcu la te the value o f the opt ion at each node at s tep steps−j

DiscountedPayOffTree = exp(−r ∗dt ) ∗(p∗APayOffTree + (1−p) ∗APayOffTree2

↪→ ) ;

%% As we r e c i v e a c o n t r i b u t i o n from the penult imate term o f the

↪→ vec to r

% to g ive an extra term . Set t h i s to zero .

DiscountedPayOffTree ( s t ep s+2−j , 1) = 0 ;

% Calcu la te the payo f f t r e e o f an american opt ion

APayOffTree = DiscountedPayOffTree ;

APayOffTree ( s t ep s+2− j : s t ep s +1, 1) = 0 ;

end

Value = APayOffTree (1 , 1 ) ;

C.1.3 Source Program Binomial Trees MatLab Code

f unc t i on Value = BinomialTrees (k , s 0 , dt , s teps , type , r , vars , o1 , o2 )

%% Function to approximate the p r i c e o f a Euroepan opt ion us ing Binomial

% t r e e s

%% Inputs :

% K − s t r i k e p r i c e

% s 0 − s tock p r i c e

% dt − s t ep s s i z e

% s t ep s − number o f s t ep s

% type − ’C’ f o r c a l l ’P’ f o r put

% r − r i s k f r e e i n t r e s t r a t e

% vars− d e s c r i b e s op t i ona l parameter o2 and i m p l i c i t l y d e f i n e s o2 . This

↪→ has

% a few de f ined va lue s vars=1 \Rightarrow o1=u o2=d . vars=2 \Rightarrow

% o1=sigma o2 need not be s p e c i f i e d . vars=3 \Rightarrow o1=sigma , o2 =eta

↪→ .

%% Test how many arguments the re are to d e f i n e inputs

i f narg in==9

%% i f o1 and o2 are g iven we need to dscern between the vars=1 and

% vars =3 ca s e s .

i f vars == 1
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%% Cal l the o p r o r i a t e func t i on to f i n d these va lue

Value = BinomialTreesCRRE ( o1 , o2 , k , s 0 , dt , r , s teps , type ) ;

e l s e i f vars == 3

%% Calcu la te u and d f i r s t then c a l l the opropr i a t e func t i on .

u = exp ( o1∗ s q r t ( dt ) + o2∗dt ) ;

d = exp(−o1∗ s q r t ( dt ) + o2∗dt ) ;

Value = BinomialTreesCRRE (u , d , k , s 0 , dt , r , s teps , type ) ;

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e i f narg in == 8

i f vars == 2

%% Calcu la te u and d f i r s t then c a l l the opropr i a t e func t i on .

u = exp ( o1∗ s q r t ( dt ) ) ;

d = exp(−o1∗ s q r t ( dt ) ) ;

Value = BinomialTreesCRRE (u , d , k , s 0 , dt , r , s teps , type ) ;

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

Value = −1;

end

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven are not s i f f i c e n t to s o l v e the

↪→ probelm ’ )

Value = −1;

end

C.1.4 Numerical Estimation of Greeks from a Binomial Tree MatLab Code

f unc t i on Value=BinomialTreesCRREGreeks (u , d ,K, s 0 , dt , r , s teps , type , greek

↪→ )

%% Approximates the Greeks f o r a European opt ion from a Binomial Tree .

%% Inputs :

% u = amount s tock i n c r e a s e s by

% d= amount s tock de c r e a s e s by

% m = amount s tock i n c r e a s e s / dec r ea se i f i t s t ay s the same

%(D r i f t modles t h i s w i l l be not always equal to one )

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e

% s t ep s = number o f s t ep s that are to be taken
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% type = type o f opt ion being cons idered , e i t h e r C or P f o r c a l l or put

% greek = the greek we wish to c a l c u l a t e (1−Delta , 2−Gamma,3−Theta ) .

%% Find p r o b a b i l i t y

R = exp ( r ∗dt ) ;

p = (R − d) /(u − d) ;

%% Def ine end nodes t r e e s i z e

BTree = ze ro s ( s t ep s +1 ,1) ;

%% Generate the end nodes o f the t r e e

f o r j = 0 : s t ep s

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

%% Calcu la te the payo f f from the end nodes

PayOffTree = ze ro s ( s i z e ( BTree ) ) ;

i f strcmp ( type , ’C’ ) == 1 ;

PayOffTree = max( BTree−K, 0 ) ;

e l s e

PayOffTree = max(K−BTree , 0 ) ;

end

%% We qu i ck ly d e f i n e a matrix here that w i l l s t o r e our va lue s our Greeks

Del tas = ze ro s ( steps , s t ep s ) ;

Theta = ze ro s ( steps , s t ep s ) ;

Gamma = ze ro s ( steps −1, s teps −1) ;

%% Now we must backdate to the prev ious nodes .

% Def ine 2 new v ec to r s to a l low vec to r ope ra t i on s to be performed .

f o r i = 0 : steps−1

Sh i f tTree1 = c i r c s h i f t ( PayOffTree ,[−1 1 ] ) ;

%% In Sh i f tTree1 the nth entry i s nonzero and w i l l g ive us an

% i n c o r e c t vec to r awnser .

Sh i f tTree1 ( s t ep s+1−i , 1 ) = 0 ;

%% Now we backdate to the prev ious s tep

PayOffTree1 = exp(−r ∗dt ) ∗(p∗PayOffTree + (1−p) ∗ Sh i f tTree1 ) ;

PayOffTree2 = PayOffTree ;

Sh i f tTree3 = c i r c s h i f t ( PayOffTree ,[−1 1 ] ) ;

Sh i f tTree3 ( steps−i +1 ,1) = 0 ;
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%% We now have a l l we r e q u i r e to c a l c u l a t e de l t a at t h i s s tep .

% We need our s tock p r i c e s at t h i s s tep .

BTree = 0 ;

f o r j = 0 : steps−i

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( steps−i )−j ) ) ∗dˆ( j ) ;

end

%% Def ine two ve c t o r s to c a l c u l a t e Greeks

Sh i f tTree2 = c i r c s h i f t ( BTree ,[−1 1 ] ) ;

Sh i f tTree2 ( steps−i +1 ,1) = 0 ;

%% Now we c a l c u l a t e d e l t a at our s t ep s and s t o r e i t .

A = ( PayOffTree2− Sh i f tTree3 ) ;

B= BTree − Sh i f tTree2 ;

D= A. /B;

D = D( 1 : steps−i , 1 ) ;

A = A( 1 : s teps−i , 1 ) ;

De l tas ( 1 : s teps−i , s teps−i ) = D;

%% Calcu la te the other greeks . Theta i s the g iven by ,

Theta ( 1 : s teps−i , s teps−i ) = A. / ( 2∗ dt ) ;

%% Test to ensure we are not at l a s t s tep where Gamma has no value .

i f i ˜= steps−1

%% Use Delta and c a l c u l a t e approximate d e r i v a t i v e .

D 1 = c i r c s h i f t (D,[−1 1 ] ) ;

D 1 = D 1 ( 1 : steps−i −1 ,1) ;

D = D( 1 : steps−i −1 ,1) ;

%% Now we may c a l c u l a t e the d i f f e r e n c e .

D e l t a D i f f e r e n c e = D−D 1 ;

%% This r e l i e s on the p r i c e s a node backwards we need to c a l c u l a t e the se .

BTree = 0 ;

f o r j = 0 : steps−i−1

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

Sh i f tTree2 = c i r c s h i f t ( BTree ,[−1 1 ] ) ;

Sh i f tTree2 ( steps−i ) = 0 ;

Sh i f tTree2 = Sh i f tTree2 ( 1 : s teps−i −1 ,1) ;

BTree= BTree ( 1 : s teps−i −1 ,1) ;

B= BTree − Sh i f tTree2 ;

Gamma( 1 : steps−i −1, s teps−i −1) = D e l t a D i f f e r e n c e . /B;

end

%% We use then do t h i s the apropr i a t e number o f t imes to l ead us back to

%our f i r s t s tep .
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PayOffTree = PayOffTree1 ( 1 : s teps−i , 1 ) ;

end

i f greek == 1 ;

Value = Deltas ;

e l s e i f greek ==2;

Value = Gamma;

e l s e

Value = Theta ;

end

C.2 American

C.2.1 Binomial Trees MatLab Code MatLab Code

f unc t i on Value = BinomialTreesACrr (u , d ,K, s 0 , dt , r , s teps , type )

%% Approxmates the value o f an American opt ion us ing a Binomail Tree

% approximation

%% Inputs :

% u = amount s tock goes up by

% d= amount s tock goes down by

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e

% s t ep s = number o f s t ep s that are to be taken

% type = type o f opt ion being cons idered , e i t h e r C or P f o r c a l l or put

% F i r s t we need to c a l c u l a t e p r o a b i l i t y , f o r CRR t h i s i s g ivn by ,

% Current ly only works f o r puts not c a l l s

%% Calu la te p r o b a b i l i t y

R = exp ( r ∗dt ) ;

p = (R − d) /(u − d) ;

BTree = ze ro s ( s t ep s +1 ,1) ;

%%Generate Binomial t r e e as a vec to r f o r the f i n a l s tep .

f o r j = 0 : s t ep s

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

EPayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%% Find the Payof f f unc t i on f o r the opt ion at the end po int

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 0 : s t ep s

EPayOffTree ( j +1 ,1) = max( BTree ( j +1 ,1)−K, 0 ) ;
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end

e l s e

f o r j = 1 : s t ep s+1

EPayOffTree ( j , 1 ) = max(K−BTree ( j , 1 ) , 0 ) ;

end

end

%% Generate the binomial t r e e as a vec to r at s tep ( steps −1)

f o r i = 0 : steps−1

BTree ( i +1 ,1) = s 0 ∗(u ˆ( ( steps −1)− i ) ) ∗dˆ( i ) ;

end

APayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%% At step ( steps −1) the l a s t entry o f the vec to r i s now zero we

% s e t t h i s .

BTree ( s t ep s +1, 1) = 0 ;

%% S h i f t s the payo f f t r e e up one to a l low vec to r ope ra t i on s

EPayOffTree2 = c i r c s h i f t ( EPayOffTree ,[−1 1 ] ) ;

%% Ca l cu l a t e s the value o f a opt ion at prev ious s tep

DiscountedPayOffTree = exp(−r ∗dt ) ∗(p∗EPayOffTree + (1−p) ∗EPayOffTree2

↪→ ) ;

%% As we r e c i v e a c o n t r i b u t i o n from the penult imate term o f the

↪→ vec to r

% to g ive an extra term . Set t h i s to zero .

DiscountedPayOffTree ( s t ep s +2−1, 1) = 0 ;

%% Calu late the payo f f f unc t i on f o r a american opt ion

i f strcmp ( type , ’C’ ) == 1 ;

APayOffTree = max( DiscountedPayOffTree , BTree−K ) ;

e l s e

APayOffTree = max( DiscountedPayOffTree , K − BTree ) ;

end

%% As the f i n a l va lue o f the vec to r i s ze ro t h i s w i l l r e turn a payo f f

↪→ o f

% K at the f i n a l entry f o r a put . Hence we s e t t h i s to zero .

APayOffTree ( s t ep s +2−1, 1) = 0 ;

f o r j = 2 : s t ep s

BTree= ze ro s ( s i z e ( APayOffTree ) ) ;

%% Calu la te the binomial t r e e at s tep steps−j

f o r i = 0 : steps−j

BTree ( i +1 ,1) = s 0 ∗(u ˆ( ( steps−j )− i ) ) ∗dˆ( i ) ;

end

%% S h i f t s the payo f f t r e e up one to a l low vec to r ope ra t i on s

APayOffTree2 = c i r c s h i f t ( APayOffTree ,[−1 1 ] ) ;

%% Ca l cu l a t e s the value o f a opt ion at prev ious s tep
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DiscountedPayOffTree = exp(−r ∗dt ) ∗(p∗APayOffTree + (1−p) ∗APayOffTree2

↪→ ) ;

%% As we r e c i v e a c o n t r i b u t i o n from the penult imate term o f the

↪→ vec to r

% to g ive an extra term . Set t h i s to zero .

DiscountedPayOffTree ( s t ep s+2−j , 1) = 0 ;

%% Calcu la te the payo f f t r e e o f an american opt ion

i f strcmp ( type , ’C’ ) == 1 ;

APayOffTree = max( DiscountedPayOffTree , BTree−K ) ;

e l s e

APayOffTree = max( DiscountedPayOffTree , K − BTree ) ;

end

% Again as f o r a put we would r e c i v e a payo f f o f K at the zero terms

↪→ we

% s e t a l l o f the se to zero .

APayOffTree ( s t ep s+2− j : s t ep s +1, 1) = 0 ;

end

Value = APayOffTree (1 , 1 ) ;

C.2.2 Source Program Binomial Trees MatLab Code

f unc t i on Value = BinomialTreesA (k , s 0 , dt , s teps , type , r , vars , o1 , o2 )

%% Fucntion to approximate the p r i c e o f a European opt ion us ing a

↪→ Binomail

% t r e e method .

%% Inputs :

% K − s t r i k e p r i c e

% s 0 − s tock p r i c e

% dt − s t ep s s i z e

% s t ep s − number o f s t ep s

% type − ’C’ f o r c a l l ’P’ f o r put

% r − r i s k f r e e i n t r e s t r a t e

% vars− d e s c r i b e s op t i ona l parameter o2 and i m p l i c i t l y d e f i n e s o2 . This

↪→ has

% a few de f ined va lue s vars=1 \Rightarrow o1=u o2=d . vars=2 \Rightarrow

% o1=sigma o2 need not be s p e c i f i e d . vars=3 \Rightarrow o1=sigma , o2 =eta

↪→ .

%% Test how many arguments the re are to d e f i n e inputs

i f narg in==9

%% i f o1 and o2 are g iven we need to dscern between the vars=1 and

% vars =3 ca s e s .
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i f vars == 1

%% Cal l the o p r o r i a t e func t i on to f i n d these va lue and greeks .

Value = BinomialTreesACrr ( o1 , o2 , k , s 0 , dt , r , s teps , type ) ;

e l s e i f vars == 3

%% Calcu la te u and d f i r s t then c a l l the opropr i a t e func t i on .

u = exp ( o1∗ s q r t ( dt ) + o2∗dt ) ;

d = exp(−o1∗ s q r t ( dt ) + o2∗dt ) ;

Value = BinomialTreesACrr (u , d , k , s 0 , dt , r , s teps , type ) ;

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e i f narg in == 8

i f vars == 2

%% Calcu la te u and d f i r s t then c a l l the opropr i a t e func t i on .

u = exp ( o1∗ s q r t ( dt ) ) ;

d = exp(−o1∗ s q r t ( dt ) ) ;

Value = BinomialTreesACrr (u , d , k , s 0 , dt , r , s teps , type ) ;

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven are not s i f f i c e n t to s o l v e the

↪→ probelm ’ )

end

C.2.3 Numerical Estimation of Greeks from a Binomial Tree MatLab Code

f unc t i on Value = BinomialTreesAGreeks (u , d ,K, s 0 , dt , r , s teps , type , greek )

% Function c a l c u l a t e s i n i t a l p r i c e o f a American option , e i t h e r put or

% c a l l , us ing CRR model No d i r f t .

% u = amount s tock goes up by

% d= amount s tock goes down by

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e

% s t ep s = number o f s t ep s that are to be taken

% type = type o f opt ion being cons idered , e i t h e r C or P f o r c a l l or put

% F i r s t we need to c a l c u l a t e p r o a b i l i t y , f o r CRR t h i s i s g ivn by ,

% Current ly only works f o r puts not c a l l s

% greek = the greek we wish to c a l c u l a t e (1−Delta , 2−Gamma,3−Theta ) .
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%% Calcu la te p r o b a b i l i t y

R = exp ( r ∗dt ) ;

p = (R − d) /(u − d) ;

BTree = ze ro s ( s t ep s +1 ,1) ;

%% Generate Binomial t r e e as a vec to r f o r the f i n a l s tep .

f o r j = 0 : s t ep s

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

EPayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%% Finds the Payof f f unc t i on f o r the opt ion at the end po int

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 0 : s t ep s

EPayOffTree ( j +1 ,1) = max( BTree ( j +1 ,1)−K, 0 ) ;

end

e l s e

f o r j = 1 : s t ep s+1

EPayOffTree ( j , 1 ) = max(K−BTree ( j , 1 ) , 0 ) ;

end

end

%% Generates the binomial t r e e as a vec to r at s tep ( steps −1)

f o r i = 0 : steps−1

BTree ( i +1 ,1) = s 0 ∗(u ˆ( ( steps −1)− i ) ) ∗dˆ( i ) ;

end

APayOffTree = ze ro s ( s i z e ( BTree ) ) ;

%% At step steps−1 the l a s t entry o f the vec to r i s now zero we

% s e t t h i s .

BTree ( s t ep s +2−1, 1) = 0 ;

%% S h i f t s the payo f f t r e e up one to a l low vec to r ope ra t i on s

EPayOffTree2 = c i r c s h i f t ( EPayOffTree ,[−1 1 ] ) ;

%% Ca l cu l a t e s the value o f a european opt ion at each o f the nodes at

% step steps−1

DiscountedPayOffTree = exp(−r ∗dt ) ∗(p∗EPayOffTree + (1−p) ∗EPayOffTree2

↪→ ) ;

%% As we r e c i v e a c o n t r i b u t i o n from the penult imate term o f the

↪→ vec to r

% to g ive an extra term we s e t t h i s to zero .

DiscountedPayOffTree ( s t ep s +2−1, 1) = 0 ;

%% Calu late the payo f f f unc t i on f o r a american opt ion

i f strcmp ( type , ’C’ ) == 1 ;

APayOffTree = max( DiscountedPayOffTree , BTree−K ) ;

e l s e

APayOffTree = max( DiscountedPayOffTree , K − BTree ) ;

end
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%% As the f i n a l va lue o f the vec to r i s ze ro t h i s w i l l r e turn a payo f f

↪→ o f

% K at the f i n a l entry f o r a put . Hence we s e t t h i s to zero .

APayOffTree ( s t ep s +2−1, 1) = 0 ;

%% Def ine m a t r i c i e s to s t o r e v e t o r e s

Del tas = ze ro s ( steps , s t ep s ) ;

Theta = ze ro s ( steps , s t ep s ) ;

Gamma = ze ro s ( steps −1, s teps −1) ;

%% Now we may c a l c u l a t e them .

PayOffTree2 = APayOffTree ;

%% S h i f t vec to r to a l low vecot r ope ra t i on s

Sh i f tTree3 = c i r c s h i f t ( APayOffTree ,[−1 1 ] ) ;

Sh i f tTree3 ( s t ep s +1 ,1) = 0 ;

Sh i f tTree2 = c i r c s h i f t ( BTree ,[−1 1 ] ) ;

Sh i f tTree2 ( s t ep s +1 ,1) = 0 ;

%% Calcu la te Delta

A = ( PayOffTree2− Sh i f tTree3 ) ;

B= BTree − Sh i f tTree2 ;

D= A. /B;

D = D( 1 : steps , 1 ) ;

A = A( 1 : s teps , 1 ) ;

%% Calcu la te Theta

Deltas ( 1 : s teps , s t ep s ) = D;

Theta ( 1 : s teps , s t ep s ) = A./ ( 2∗ dt ) ;

%% Gamma i s Delta o f Delta so we need to change the ve c to r s as be f o r e

↪→ .

D 1 = c i r c s h i f t (D,[−1 1 ] ) ;

D 1 = D 1 ( 1 : steps −1 ,1) ;

D = D( 1 : steps −1 ,1) ;

%% Now we may c a l c u l a t e the d i f f e r e n c e .

D e l t a D i f f e r e n c e = D−D 1 ;

%% As t h i s r e l i e s on the p r i c e s a node backwards we need to c a l c u l a t e

↪→ the se .

BTree = 0 ;

f o r j = 0 : steps−1

BTree ( j +1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−j ) ) ∗dˆ( j ) ;

end

Sh i f tTree2 = c i r c s h i f t ( BTree ,[−1 1 ] ) ;
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Sh i f tTree2 ( s t ep s ) = 0 ;

Sh i f tTree2 = Sh i f tTree2 ( 1 : s teps −1 ,1) ;

BTree= BTree ( 1 : s teps −1 ,1) ;

B= BTree − Sh i f tTree2 ;

Gamma( 1 : steps −1, s teps −1) = D e l t a D i f f e r e n c e . /B;

f o r j = 2 : s t ep s

%% Calu late the binomial t r e e at s tep steps−j

BTree = 0 ;

f o r i = 0 : steps−j+1

BTree ( i +1 ,1) = s 0 ∗(u ˆ( ( steps−j )− i ) ) ∗dˆ( i ) ;

end

%% S h i f t s the payo f f t r e e up one to a l low vec to r ope ra t i on s

APayOffTree2 = c i r c s h i f t ( APayOffTree ,[−1 1 ] ) ;

% Ca l cu l a t e s the value o f The opt ion at each node at s tep steps−j

DiscountedPayOffTree = exp(−r ∗dt ) ∗(p∗APayOffTree + (1−p) ∗APayOffTree2

↪→ ) ;

%% As we r e c i v e a c o n t r i b u t i o n from the penult imate term o f the

↪→ vec to r

% to g ive an extra term we s e t t h i s to zero .

DiscountedPayOffTree ( s t ep s+3−j , 1) = 0 ;

DiscountedPayOffTree = DiscountedPayOffTree ( 1 : s teps−j +2 ,1) ;

%% Calcu la te the payo f f o f an american opt ion

i f strcmp ( type , ’C’ ) == 1 ;

APayOffTree = max( DiscountedPayOffTree , BTree−K ) ;

e l s e

APayOffTree = max( DiscountedPayOffTree , K − BTree ) ;

end

%% Again as f o r a put we would r e c i v e a payo f f o f K at the zero terms

↪→ we

% s e t a l l o f the se to zero .

PayOffTree2 = APayOffTree ;

Sh i f tTree3 = c i r c s h i f t ( APayOffTree ,[−1 1 ] ) ;

Sh i f tTree3 ( steps−j +2 ,1) = 0 ;

%% We cons t ruc t 2 ve c t o r s so we may peform vecto r ope ra t i on s to f i n d

↪→ Delta

Sh i f tTree2 = c i r c s h i f t ( BTree ,[−1 1 ] ) ;

Sh i f tTree2 ( steps−j +2 ,1) = 0 ;

%% Now we c a l c u l a t e d e l t a at our s t ep s and s t o r e i t in a vec to r .

A = ( PayOffTree2− Sh i f tTree3 ) ;

B= BTree − Sh i f tTree2 ;

D= A. /B;

D = D( 1 : steps−j +1 ,1) ;

A = A( 1 : s teps−j +1 ,1) ;
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Del tas ( 1 : s teps−j +1, s teps−j +1) = D;

%% Calcu la te Theta

Theta ( 1 : s teps−j +1, s teps−j +1) = A./ ( 2∗ dt ) ;

%% Gamma i s Delta o f Delta so we need to change the ve c to r s as be f o r e .

D 1 = c i r c s h i f t (D,[−1 1 ] ) ;

D 1 = D 1 ( 1 : steps−j , 1 ) ;

D = D( 1 : steps−j , 1 ) ;

%% Now we may c a l c u l a t e the d i f f e r e n c e .

D e l t a D i f f e r e n c e = D−D 1 ;

%% As t h i s r e l i e s on the p r i c e s a node backwards we need to c a l c u l a t e

↪→ the se .

i f j ˜= s t ep s

BTree = 0 ;

f o r k = 0 : steps−j

BTree ( k+1 ,1) = s 0 ∗(u ˆ( ( s t ep s )−k ) ) ∗dˆ( k ) ;

end

Sh i f tTree2 = c i r c s h i f t ( BTree ,[−1 1 ] ) ;

Sh i f tTree2 ( steps−j +1) = 0 ;

Sh i f tTree2 = Sh i f tTree2 ( 1 : s teps−j , 1 ) ;

BTree= BTree ( 1 : s teps−j , 1 ) ;

B= BTree − Sh i f tTree2 ;

Gamma( 1 : steps−j , s teps−j ) = D e l t a D i f f e r e n c e . /B;

end

end

i f greek == 1 ;

Value = Deltas ;

e l s e i f greek ==2;

Value = Gamma;

e l s e

Value = Theta ;

end

Appendix D Trinomial Trees

D.1 European

D.1.1 Trinomial Trees MatLab Code (Boyle)

f unc t i on Value=TrinomialTreesEBoyle (u , d ,m,K, s 0 , dt , r , s teps , type )
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%% Approximates the value o f a European opt ion us ing Boyles va lue s f o r u&

↪→ d

%% Inputs

% u = amount s tock i n c r e a s e s by

% d= amount s tock de c r e a s e s by

% m = amount s tock i n c r e a s e s / dec r ea se i f i t s t ay s the same

%(D r i f t modles t h i s w i l l be not always equal to one )

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e

% s t ep s = number o f s t ep s that are to be taken

% type = type o f opt ion being cons idered , e i t h e r C or P f o r c a l l or put

%% We must f i r s t c a l c u l a t e the p r o b a b i l i t i e s o f each branch o f the t r e e .

R = exp ( r ∗dt /2) ;

p u = ( (R − d ˆ(1/2) ) /(u ˆ(1/2)−d ˆ(1/2) ) ) ˆ2 ;

p d = ( ( u ˆ(1/2) − R) /(u ˆ(1/2)−d ˆ(1/2) ) ) ˆ2 ;

p m = 1−p u−p d ;

%% Generate our t r e e up to the nth step .

n = 2∗ s t ep s + 1 ;

BTree = ze ro s (n , 1 ) ;

f o r j = 0 : steps−1

BTree ( j +1 ,1) = s 0 ∗uˆ( steps−j ) ∗mˆ( j ) ;

BTree (n−j , 1 ) = s 0 ∗dˆ( steps−j ) ∗mˆ( j ) ;

end

BTree ( ( ( n−1)/2) +1 ,1) = s 0 ∗mˆ s t ep s ;

%% Calcu la te the payo f f from the end nodes

PayOffTree = ze ro s ( s i z e ( BTree ) ) ;

i f strcmp ( type , ’C’ ) == 1 ;

PayOffTree = max( BTree−K, 0 ) ;

e l s e

PayOffTree = max(K−BTree , 0 ) ;

end

%% Now we must backdate to the prev ious nodes .

% Def ine 2 new v ec to r s to a l low vec to r ope ra t i on s to be performed .

% Loop through the number o f s t ep s taken t reach the f i r s t s tep

f o r i = 0 : steps−1
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Shi ftTree1 m = c i r c s h i f t ( PayOffTree ,[−1 1 ] ) ;

Sh i f tTree2 d = c i r c s h i f t ( PayOffTree ,[−2 1 ] ) ;

%% In Sh i f tTree1 the nth entry i s nonzero and should be .

%In Sh i f tTree2 t h i s i s a l s o t rue and a l s o f o r the n−1th entry .

%We must needs make these zero .

Shi ftTree1 m (n , 1 ) = 0 ;

Sh i f tTree2 d (n , 1 ) = 0 ;

Sh i f tTree2 d (n−1 ,1) =0;

%% Now we backdate to the prev ious s tep us ing the formula

PayOffTree = exp(−r ∗dt ) ∗( p u∗PayOffTree + p m∗Shi ftTree1 m + p d∗
↪→ Sh i f tTree2 d ) ;

n= 2∗( s teps−i −1) + 1 ;

PayOffTree = PayOffTree ( 1 : n , 1 ) ;

end

Value = PayOffTree (1 , 1 ) ;

D.1.2 Trinomial Trees Source Program (Boyle)

f unc t i on TrinomialTreesE (k , s 0 , dt , s teps , type , r , vars , o1 , o2 )

%% Approximates the value o f a European opt ion us ing a t r i n o m i a l t r e e

% with Boyles u , d and p

%% Inputs :

% K − s t r i k e p r i c e

% s 0 − s tock p r i c e

% dt − s t ep s s i z e

% s t ep s − number o f s t ep s

% type − ’C’ f o r c a l l ’P’ f o r put

% r − r i s k f r e e i n t r e s t r a t e

% vars− d e s c r i b e s op t i ona l parameter o2 and i m p l i c i t l y d e f i n e s o2 . This

↪→ has

% a few de f ined va lue s vars=1 \Rightarrow o1=u o2=d . vars=2 \Rightarrow

% o1=sigma o2 need not be s p e c i f i e d .

%% F i r s t we need to t e s t how many arguments the re are .

i f narg in==9

%% I f o1 and o2 are g iven we need to dscern between the vars=1

% and vars =3 ca s e s .

i f vars == 1
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%% Cal l the o p r o r i a t e func t i on to f i n d these va lue

TrinomialTreesEBoyle ( o1 , o2 , 1 , k , s 0 , dt , r , s teps , type )

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e i f narg in == 8

i f vars == 2

%% Calcu la te u and d f i r s t then c a l l the opropr i a t e func t i on .

u= exp ( sigma∗ s q r t (2∗ dt ) ) ;

d = 1/u ;

m=1;

TrinomialTreesEBoyle (u , d ,m, k , s 0 , dt , r , s teps , type )

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven are not s i f f i c e n t to s o l v e the

↪→ probelm ’ )

end

D.2 American

D.2.1 Trinomial Trees MatLab Code MatLab Code (Boyle)

f unc t i on Value = TrinomialTreesABoyle (u , d ,m,K, s 0 , dt , r , s teps , type )

%% Approximates the value o f a American opt ion us ing Boyles va lue s f o r u&

↪→ d

%% Inputs

% u = amount s tock i n c r e a s e s by

% d= amount s tock de c r e a s e s by

% m = amount s tock i n c r e a s e s / dec r ea se i f i t s t ay s the same

%(D r i f t modles t h i s w i l l be not always equal to one )

% K = s t r i k e p r i c e

% s 0 cur rent s tock p r i c e

% r = r i sk−f r e e i n t r e s t r a t e

% s t ep s = number o f s t ep s that are to be taken

% type = type o f opt ion being cons idered , e i t h e r ’C’ or ’P’ f o r c a l l or

↪→ put

%% We must f i r s t c a l c u l a t e the p r o b a b i l i t i e s o f each branch o f the t r e e .
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R = exp ( r ∗dt /2) ;

p u = ( (R − d ˆ(1/2) ) /(u ˆ(1/2)−d ˆ(1/2) ) ) ˆ2 ;

p d = ( ( u ˆ(1/2) − R) /(u ˆ(1/2)−d ˆ(1/2) ) ) ˆ2 ;

p m = 1−p u−p d ;

%% Generate our t r e e up to the nth step .

n = 2∗ s t ep s + 1 ;

BTree = ze ro s (n , 1 ) ;

f o r j = 0 : steps−1

BTree ( j +1 ,1) = s 0 ∗uˆ( steps−j ) ∗mˆ( j ) ;

BTree (n−j , 1 ) = s 0 ∗dˆ( steps−j ) ∗mˆ( j ) ;

end

BTree ( ( ( n−1)/2) +1 ,1) = s 0 ∗mˆ s t ep s ;

%% Calcu la te the payo f f from the end nodes

PayOffTree = ze ro s ( s i z e ( BTree ) ) ;

i f strcmp ( type , ’C’ ) == 1 ;

PayOffTree = max( BTree−K, 0 ) ;

e l s e

PayOffTree = max(K−BTree , 0 ) ;

end

%% We must now backdate to the prev ious nodes

f o r i = 0 : steps−1

Shi ftTree1 m = c i r c s h i f t ( PayOffTree ,[−1 1 ] ) ;

Sh i f tTree2 d = c i r c s h i f t ( PayOffTree ,[−2 1 ] ) ;

%% In Sh i f tTree1 the nth entry i s nonzero and should be .

%In Sh i f tTree2 t h i s i s a l s o t rue and a l s o f o r the n−1th entry .

%We must needs make these zero .

Shi ftTree1 m (n , 1 ) = 0 ;

Sh i f tTree2 d (n , 1 ) = 0 ;

Sh i f tTree2 d (n−1 ,1) =0;

%% Ca l cu l t a t e the backdated value o f the opt ion .

PayOffTree = exp(−r ∗dt ) ∗( p u∗PayOffTree + p m∗Shi ftTree1 m + p d∗
↪→ Sh i f tTree2 d ) ;

PayOffTree2 = PayOffTree ( 1 : 2∗ ( steps −( i +1) ) + 1 ,1) ;

%% Now we must eva luate the value o f the opt ion i f e x e r c i s e d at t h i s node

↪→ .

n = 2∗( s teps−(1+ i ) ) + 1 ;
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BTree = ze ro s (n , 1 ) ;

f o r j = 0 : steps −( i +1)

BTree ( j +1 ,1) = s 0 ∗uˆ( steps−j ) ∗mˆ( j ) ;

BTree (n−j , 1 ) = s 0 ∗dˆ( steps−j ) ∗mˆ( j ) ;

end

BTree ( ( ( n−1)/2) +1 ,1) = s 0 ∗mˆ s t ep s ;

i f strcmp ( type , ’C’ ) == 1 ;

PayOffTree1 = max( BTree−K, 0 ) ;

e l s e

PayOffTree = max(K−BTree , 0 ) ;

end

%% We tke the maximum of these two va lue s as our new payo f f t r e e .

PayOffTree = max( PayOffTree1 , PayOffTree2 ) ;

end

Value = PayOffTree (1 , 1 ) ;

D.2.2 Trinomial Trees Source Code (Boyle)

f unc t i on TrinomialTreesA (k , s 0 , dt , s teps , type , r , vars , o1 , o2 )

%% Approximates the value o f a American opt ion us ing a t r i n o m i a l t r e e

% with Boyles u , d and p

%% Inputs :

% K − s t r i k e p r i c e

% s 0 − s tock p r i c e

% dt − s t ep s s i z e

% s t ep s − number o f s t ep s

% type − ’C’ f o r c a l l ’P’ f o r put

% r − r i s k f r e e i n t r e s t r a t e

% vars− d e s c r i b e s op t i ona l parameter o2 and i m p l i c i t l y d e f i n e s o2 . This

↪→ has

% a few de f ined va lue s vars=1 \Rightarrow o1=u o2=d . vars=2 \Rightarrow

% o1=sigma o2 need not be s p e c i f i e d .

%% F i r s t we need to t e s t how many arguments the re are

i f narg in==9

%% i f o1 and o2 are g iven we need to dscern between the vars=1

% and vars =3 ca s e s .

i f vars == 1
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%% Cal l the o p r o r i a t e func t i on to f i n d these va lue

TrinomialTreesABoyle ( o1 , o2 , 1 , k , s 0 , dt , r , s teps , type )

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e i f narg in == 8

i f vars == 2

%% Calcu la te u and d f i r s t then c a l l the opropr i a t e func t i on .

u= exp ( sigma∗ s q r t (2∗ dt ) ) ;

d = 1/u ;

m=1;

TrinomialTreesABoyle (u , d ,m, k , s 0 , dt , r , s teps , type )

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven d i s a g r e e s with the case g iven

↪→ in vars ’ )

end

e l s e

d i sp ( ’ The number o f v a r i a b l e s g iven are not s i f f i c e n t to s o l v e the

↪→ probelm ’ )

end

Appendix E Finite Difference Methods

E.1 European

E.1.1 Implicit Finite Difference Method MatLab Code

f unc t i on Value = Fin i t eDi f f e r eceMethodsEI (k , s 0 , r , q ,T, sigma , s min , s max ,

↪→ M ,N, type )

%% This i s a func t i on to use an i m p l i c i t f i n i t e d i f f e r e n c e methods

% to approximate the value o f a European opt ion

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% q− d iv idends during the l i f e t i m e o f the opt ion

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock
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% s min − the minimum value o f the s tock con i sde red

% s max − the maximum value o f the s tock cons ide r ed

% M − the number o f i n t e r v a l s o f s tock p r i c e cons ide r ed . (M+1 po in t s

↪→ cons ide r ed )

% N − the numer o f i n t e r v a l s o f time cons ide r ed (N+1 po in t s cons ide rd )

% type − takes va lue ’C’ f o r c a l l s and ’P’ f o r puts .

% s min should be chosen s . t . the va lue f o r a c a l l i s ze ro here .

% s max should be chosen s . t . the va lye f o r a put i s ze ro here .

%% Calcu la te dt and dS from T, s min , s max , N and M.

dt = T/N;

dS = ( s max − s min ) /M;

%% Construct ve c to r s to s t o r e our va lue s f o r the a j , b j and c j

A=ze ro s (M−1 ,1) ;

B=ze ro s (M−1 ,1) ;

C=ze ro s (M−1 ,1) ;

f o r j = 1 :M−1

A( j , 1 ) = 0 . 5∗ ( r−q ) ∗ j ∗dt − 0 . 5∗ ( sigma ˆ2) ∗( j ˆ2) ∗dt ;

B( j , 1 ) = 1 + ( sigma ˆ2) ∗( j ˆ2) ∗dt + r ∗dt ;

C( j , 1 ) = −0.5∗( r−q ) ∗ j ∗dt − 0 . 5∗ ( sigma ˆ2) ∗( j ˆ2) ∗dt ;

end

% Calcu la te a vec to r conta in ing the knowns

i f strcmp ( type , ’C’ ) == 1 ;

%% These are from Boundry c o n t i t i o n s

D(1 , 1 ) = max(0 , s min + dS − k ) ; %%a 1 ∗ f N−1,0 = 0 .

D(M−1, 1) = max(0 , s max − k ) − C(M−1 ,1)∗max(0 , s max − k ) ;

f o r j = 2 :M−2

D( j , 1 ) = max( s min + j ∗dS−k , 0) ;

end

e l s e

%% these are from Boundry c o n d i t i o n s

D(1 , 1 ) = max( k − s min − dS , 0) − A(1 ,1 ) ∗k∗exp(−r ∗dt ) ; %%

D(M−1, 1) = 0 ; %%Both terms are zero .

f o r j = 2 :M−2

D( j , 1 ) = max( k − s min − j ∗dS , 0) ;

end

end

%% Now that we have our v e c t o r s we may c a l c u l a t e our new c o e f f i c e i n t s

Cprime = ze ro s ( s i z e (C) ) ;

MA4XA 84 Dr. A. Chernov



Numerical and Analytic Methods in Option Pricing D. Edwards

Cprime (1 , 1 ) = C(1 , 1 ) /B(1 , 1 ) ;

f o r i = 2 :M−1

Cprime ( i , 1 ) = C( i , 1 ) . / (B( i , 1 )−A( i , 1 ) ∗Cprime ( i −1 ,1) ) ;

end

Dprime = ze ro s ( s i z e (D) ) ;

Dprime (1 , 1 ) = D(1 , 1 ) /B(1 , 1 ) ;

f o r i = 2 :M−1

Dprime ( i , 1 ) = (D( i , 1 )−A( i , 1 ) ∗Dprime ( i −1 ,1) ) . / (B( i , 1 )−A( i , 1 ) ∗Cprime ( i

↪→ −1 ,1) ) ;

end

%% Calcu la te our s o l u t i o n through backward s u b s i t u t i o n .

F = ze ro s ( s i z e ( Dprime ) ) ;

F(M−1 ,1) = Dprime (M−1 ,1) ;

f o r i = M−2:−1:1

F( i , 1 ) = Dprime ( i , 1 ) − Cprime ( i , 1 ) ∗F( i +1 ,1) ;

end

%% We may now constuct a Vector to s t o r e our s o l u t i o n s f o r the se M−1

% s imultaeous equat ions .

f= ze ro s (M−1,N) ;

f ( 1 :M−1,N) = F( 1 :M−1 ,1) ;

%% We loop through the N−1 s t ep s remaining to time t=0

f o r i = 0 :N−2.

%% The main d i f f e r e n c e per s tep i s that our d c o e f f i c e n t s are now the

% s o l u t i o n to the prev ious s tep ( j = 2 , . . ,M−2) .

% Def ine these as such .

f o r j = 2 :M−2

D( j , 1 ) = f ( j ,N−i ) ;

end

i f strcmp ( type , ’C’ ) == 1 ;

%% Using our boundary c o n d i t i o n s from e a r l i e r .

D(1 , 1 ) = f (1 ,N−i ) ; %% f {N−i −1 ,0} = 0 f o r a l l i .

D(M−1, 1) = max(0 , s max − k ) − C(M−1 ,1)∗max(0 , s max − k ) ;

e l s e

D(1 , 1 ) = f (1 ,N−i ) − A(1 ,1 ) ∗k∗exp(−r ∗(T−(T−1− i ) ∗dt ) ) ;

D(M−1, 1) = 0 ; %% f {N−1−i ,M} and f f {N−i −2,M} = 0 f o r a l l i

end
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%% Now that we have our v e c t o r s we may c a l c u l a t e our new c o e f f i c e i n t s

% us ing Thomas a lgor i thm .

Cprime = ze ro s ( s i z e (C) ) ;

Cprime (1 , 1 ) = C(1 , 1 ) /B(1 , 1 ) ;

f o r k = 2 :M−1

Cprime (k , 1 ) = C(k , 1 ) . / (B(k , 1 )−A(k , 1 ) ∗Cprime (k−1 ,1) ) ;

end

Dprime = ze ro s ( s i z e (D) ) ;

Dprime (1 , 1 ) = D(1 , 1 ) /B(1 , 1 ) ;

f o r k = 2 :M−1

Dprime (k , 1 ) = (D(k , 1 )−A(k , 1 ) ∗Dprime (k−1 ,1) ) . / (B(k , 1 )−A(k , 1 ) ∗Cprime (k

↪→ −1 ,1) ) ;

end

%% Calcu la te our s o l u t i o n through backward s u b s i t u t i o n .

F = ze ro s ( s i z e ( Dprime ) ) ;

F(M−1 ,1) = Dprime (M−1 ,1) ;

f o r k = M−2:−1:1

F(k , 1 ) = Dprime (k , 1 ) − Cprime (k , 1 ) ∗F( k+1 ,1) ;

end

f ( 1 :M−1,N−i −1) = F( 1 :M−1 ,1) ;

end

%% Find the S 0 f o r the r i g h t s o l u t i o n .

f o r j = 0 :M

i f s 0 − j ∗dS + s min <= 0.0001 ;

Value = f ( j +1 ,1) ;

j found =1;

end

end

i f j found ˜= 1

di sp ( ’ Your s tock p r i c e i s not one o f the p a r i t i o n s o f the plane . Try

↪→ again and make sure s 0 = s min+j ∗dS f o r some j ’ )

Value = 0 ;

end

E.1.2 Explicit Finite Difference Method MatLab Code

f unc t i on Value = FiniteDi f ferenceMethodsEE (k , s 0 , r , q ,T, sigma , s min , s max

↪→ , M ,N, type )
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%% This i s a func t i on to use an e x p l i c i t f i n i t e d i f f e r e n c e methods to

% approximate the value o f a European opt ion

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% q− d iv idends during the l i f e t i m e o f the opt ion

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% s min − the minimum value o f the s tock con i sde red

% s max − the maximum value o f the s tock cons ide r ed

% M − the number o f i n t e r v a l s o f s tock p r i c e cons ide r ed . (M+1 po in t s

↪→ cons ide r ed )

% N − the numer o f i n t e r v a l s o f time cons ide r ed (N+1 po in t s cons ide rd )

% type − takes va lue ’C’ f o r c a l l s and ’P’ f o r puts .

% s min should be chosen s . t . the va lue f o r a c a l l i s ze ro here .

% s max should be chosen s . t . the va lye f o r a put i s ze ro here .

%% Calcu la te dt and dS from T, s min , s max , N and M.

dt = T/N;

dS = ( s max − s min ) /M;

%% Impose the te rmina l c o n d i t i o n s .

i f strcmp ( type , ’C’ ) == 1 ;

%% Store boundary c o n d i t i o n s

f o r j = 1 :M+1

D( j , 1 ) = max( s min + ( j−1)∗dS−k , 0) ;

end

e l s e

%% Store Boundry c o n d i t i o n s

f o r j = 1 :M+1

D( j , 1 ) = max( k − s min − ( j−1)∗dS , 0) ;

end

end

%% We now c a l c u l a t e our c o e f f i c e n t s a∗ j , b∗ j and c∗ j .

f o r j = 1 :M+1
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A( j , 1 ) = (1/(1+ r ∗dt ) ) ∗(−0.5∗( r−q ) ∗( j−1)∗dt + 0 . 5∗ ( sigma ˆ2) ∗ ( ( j−1)ˆ2) ∗
↪→ dt ) ;

B( j , 1 ) = (1/(1+ r ∗dt ) ) ∗(1−( sigma ˆ2) ∗ ( ( j−1)ˆ2) ∗dt ) ;

C( j , 1 ) = (1/(1+ r ∗dt ) ) ∗ ( 0 . 5∗ ( r−q ) ∗( j−1)∗dt + 0 . 5∗ ( sigma ˆ2) ∗ ( ( j−1)ˆ2) ∗
↪→ dt ) ;

end

%% We w i l l perfrom vecto r ope ra t i on s to c a l c u l a t e at the N−1th step .

% We s h i f t the vecot r to do t h i s .

Shi ftD = c i r c s h i f t (D,[−1 1 ] ) ;

Shi ftD2 = c i r c s h i f t (D, [ 1 1 ] ) ;

%% These s h i f t s l e ave non−zero va lue s where the re should be . We zero

↪→ the se now .

Shi ftD (M+1 ,1) = 0 ;

Shi ftD2 (1 , 1 ) = 0 ;

%% Calcu la te the va lue s one time i n v e r v a l backwards

F( 1 :M+1 ,1) = A( 1 :M+1 ,1) .∗ ShiftD2 ( 1 :M+1 ,1) + B( 1 :M+1 ,1) .∗D( 1 :M+1 ,1) + C( 1 :

↪→ M+1 ,1) .∗ ShiftD ( 1 :M+1 ,1) ;

%% We have c a l c u l a t e d the terms at the boundary o f S ( j=1 and j=M+1) .

% We must s e t the se to the boundary c o n d i t i o n s .

i f strcmp ( type , ’C’ ) == 1 ;

F(1 , 1 ) = 0 ;

F(M+1 ,1) = max( s max−k , 0) ;

e l s e

F(1 , 1 ) = k∗exp(−r ∗dt ) ;

F(M+1 ,1) = 0 ;

end

%% These are our va lue s at time step N−1. We s t o r e the se in a matrix .

f = ze ro s (M+1,N) ;

f ( 1 :M+1,N) = F( 1 :M+1 ,1) ;

%% We must now loop through back to time step 0 .

f o r i = 0 :N−2

D( 1 :M+1 ,1) = f ( 1 :M+1,N−i ) ;

%% We s h i f t t h i s again .
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Shi ftD = c i r c s h i f t (D,[−1 1 ] ) ;

Shi ftD2 = c i r c s h i f t (D, [ 1 1 ] ) ;

%% These s h i f t s l e ave non−zero va lue s where the re should be . We zero

↪→ the se now .

Shi ftD (M+1 ,1) = 0 ;

Shi ftD2 (1 , 1 ) = 0 ;

%% Calcu la te the va lue s one time step backwards

F( 1 :M+1 ,1) = A( 1 :M+1 ,1) .∗ ShiftD2 ( 1 :M+1 ,1) + B( 1 :M+1 ,1) .∗D( 1 :M+1 ,1) + C( 1 :

↪→ M+1 ,1) .∗ ShiftD ( 1 :M+1 ,1) ;

%% Here we have c a l c u l a t e d the terms at the boundary o f S ( j=1 and j=M+1)

↪→ .

% We must s e t the se to the boundary c o n d i t i o n s .

i f strcmp ( type , ’C’ ) == 1 ;

F(1 , 1 ) = 0 ;

F(M+1 ,1) = max( s max−k , 0) ;

e l s e

F(1 , 1 ) = k∗exp(−r ∗(T−i ∗dt ) ) ;

F(M+1 ,1) = 0 ;

end

F = max(0 ,F) ;

%% These are our va lue s at time step N−1. We s t o r e the se in a matrix .

f ( 1 :M+1,N−1− i ) = F( 1 :M+1 ,1) ;

end

%% Find the S 0 f o r the r i g h t s o l u t i o n .

f o r j = 0 :M

i f s 0 − j ∗dS + s min <= 0.0001 ;

Value = f ( j +1 ,1) ;

j found =1;

end

end

i f j found ˜= 1

di sp ( ’ Your s tock p r i c e i s not one o f the p a r i t i o n s o f the plane . Try

↪→ again and make sure s 0 = s min+j ∗dS f o r some j ’ )

Value =0;

end

E.2 American

E.2.1 Implicit Finite Difference Method MatLab Code

f unc t i on Value = Fin i teDi f f e receMethodsAI (K, s 0 , r , q ,T, sigma , s min , s max ,

↪→ M ,N, type )
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%% This i s a func t i on to use an i m p l i c i t f i n i t e d i f f e r e n c e methods

% to approximate the value o f a European opt ion

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

% q− d iv idends during the l i f e t i m e o f the opt ion

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% s min − the minimum value o f the s tock con i sde red

% s max − the maximum value o f the s tock cons ide r ed

% M − the number o f i n t e r v a l s o f s tock p r i c e cons ide r ed . (M+1 po in t s

↪→ cons ide r ed )

% N − the numer o f i n t e r v a l s o f time cons ide r ed (N+1 po in t s cons ide rd )

% type − takes va lue ’C’ f o r c a l l s and ’P’ f o r puts .

% s min should be chosen s . t . the va lue f o r a c a l l i s ze ro here .

% s max should be chosen s . t . the va lye f o r a put i s ze ro here .

%% Calcu la te dt and dS from T, s min , s max , N and M.

dt = T/N;

dS = ( s max − s min ) /M;

%% We cons t ruc t v e c t o r s to s t o r e our va lue s f o r the a j , b j and c j

f o r j = 1 :M−1

A( j , 1 ) = 0 . 5∗ ( r−q ) ∗ j ∗dt − 0 . 5∗ ( sigma ˆ2) ∗( j ˆ2) ∗dt ;

B( j , 1 ) = 1 + ( sigma ˆ2) ∗( j ˆ2) ∗dt + r ∗dt ;

C( j , 1 ) = −0.5∗( r−q ) ∗ j ∗dt − 0 . 5∗ ( sigma ˆ2) ∗( j ˆ2) ∗dt ;

end

% Def ine a vecot r s o t r i n g the knowns

i f strcmp ( type , ’C’ ) == 1 ;

%% From the boundary Boundry c o n t i t i o n s

D(1 , 1 ) = max(0 , s min + dS − K) ; %%a 1 ∗ f N−1,0 = 0 .

D(M−1, 1) = max(0 , s max − K) − C(M−1 ,1)∗max(0 , s max − K) ;

f o r j = 2 :M−2

D( j , 1 ) = max( s min + j ∗dS−K, 0) ;

end

e l s e

%% From the Boundry c o n d i t i o n s
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D(1 , 1 ) = max(K − s min − dS , 0) − A(1 ,1 ) ∗K; %% JChull .

D(M−1, 1) = 0 ; %%Both terms are zero .

f o r j = 2 :M−2

D( j , 1 ) = max(K − s min − j ∗dS , 0) ;

end

end

%% Calcu la te our new c o e f f i c e i n t s

Cprime = ze ro s ( s i z e (C) ) ;

Cprime (1 , 1 ) = C(1 , 1 ) /B(1 , 1 ) ;

f o r i = 2 :M−1

Cprime ( i , 1 ) = C( i , 1 ) . / (B( i , 1 )−A( i , 1 ) ∗Cprime ( i −1 ,1) ) ;

end

Dprime = ze ro s ( s i z e (D) ) ;

Dprime (1 , 1 ) = D(1 , 1 ) /B(1 , 1 ) ;

f o r i = 2 :M−1

Dprime ( i , 1 ) = (D( i , 1 )−A( i , 1 ) ∗Dprime ( i −1 ,1) ) . / (B( i , 1 )−A( i , 1 ) ∗Cprime ( i

↪→ −1 ,1) ) ;

end

%% Calcu la te our s o l u t i o n through backward s u b s i t u t i o n .

F = ze ro s ( s i z e ( Dprime ) ) ;

F(M−1 ,1) = Dprime (M−1 ,1) ;

f o r i = M−2:−1:1

F( i , 1 ) = Dprime ( i , 1 ) − Cprime ( i , 1 ) ∗F( i +1 ,1) ;

end

%% Calcu la te the payo f f at these nodes .

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 1 : M−1

PayOff ( j , 1 ) = max(0 , j ∗dS + s min −K ) ;

end

e l s e

f o r j = 1 : M−1

PayOff ( j , 1 ) = max(0 , K−j ∗dS − s min ) ;

end

end

%% Take the maximum to determine i f e a r l y e x e r c i s e i s opt imal .

F = max( PayOff , F) ;

%% We may now constuct a Vector to s t o r e our s o l u t i o n s f o r the se M−1
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% s imultaeous equat ions .

f= ze ro s (M−1,N) ;

f ( 1 :M−1,N) = F( 1 :M−1 ,1) ;

%% We loop through the N−1 s t ep s remaining to time t=0

f o r i = 0 :N−2

%% The main d i f f e r e n c e per s tep i s that our d c o e f f i c e n t s are now the

% s o l u t i o n to the prev ious s tep ( j = 2 , . . ,M−2) .

% Def ine these as such .

f o r j = 2 :M−2

D( j , 1 ) = f ( j ,N−i ) ;

end

i f strcmp ( type , ’C’ ) == 1 ;

%% Using our boundary c o n d i t i o n s from e a r l i e r .

D(1 , 1 ) = f (1 ,N−i ) ; %% f {N−i −1 ,0} = 0 f o r a l l i .

D(M−1, 1) = max(0 , s max − K) − C(M−1 ,1)∗max(0 , s max − K) ;

e l s e

D(1 , 1 ) = f (1 ,N−i ) − A(1 ,1 ) ∗K;

D(M−1, 1) = 0 ; %% f {N−1−i ,M} and f f {N−i −2,M} = 0 f o r a l l i

end

%% Now that we have our v e c t o r s we may c a l c u l a t e our new c o e f f i c e i n t s

Cprime = ze ro s ( s i z e (C) ) ;

Cprime (1 , 1 ) = C(1 , 1 ) /B(1 , 1 ) ;

f o r k = 2 :M−1

Cprime (k , 1 ) = C(k , 1 ) . / (B(k , 1 )−A(k , 1 ) ∗Cprime (k−1 ,1) ) ;

end

Dprime = ze ro s ( s i z e (D) ) ;

Dprime (1 , 1 ) = D(1 , 1 ) /B(1 , 1 ) ;

f o r k = 2 :M−1

Dprime (k , 1 ) = (D(k , 1 )−A(k , 1 ) ∗Dprime (k−1 ,1) ) . / (B(k , 1 )−A(k , 1 ) ∗Cprime (k

↪→ −1 ,1) ) ;

end

%% Calcu la te our s o l u t i o n through backward s u b s i t u t i o n .

F = ze ro s ( s i z e ( Dprime ) ) ;

F(M−1 ,1) = Dprime (M−1 ,1) ;

f o r k = M−2:−1:1

F(k , 1 ) = Dprime (k , 1 ) − Cprime (k , 1 ) ∗F( k+1 ,1) ;

end

%% Calcu la te the payo f f at these nodes .
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i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 1 : M−1

PayOff ( j , 1 ) = max(0 , j ∗dS + s min −K ) ;

end

e l s e

f o r j = 1 : M−1

PayOff ( j , 1 ) = max(0 , K−j ∗dS − s min ) ;

end

end

%% Now we may take the maximum to determine i f e a r l y e x e r c i s e i s opt imal .

F = max( PayOff , F) ;

f ( 1 :M−1,N−i −1) = F( 1 :M−1 ,1) ;

end

%% Find the S 0 f o r the r i g h t s o l u t i o n .

f o r j = 0 :M

i f s 0 − j ∗dS + s min <= 0.0001 ;

Value = f ( j +1 ,1) ;

j found =1;

end

end

i f j found ˜= 1

di sp ( ’ Your s tock p r i c e i s not one o f the p a r i t i o n s o f the plane . Try

↪→ again and make sure s 0 = s min+j ∗dS f o r some j ’ )

Value = 0 ;

end

E.2.2 Explicit Finite Difference Method MatLab Code

f unc t i on Value = FiniteDif ferenceMethodsAE (k , s 0 , r , q ,T, sigma , s min , s max

↪→ , M ,N, type )

%% This i s a func t i on to use an e x p l i c i t f i n i t e d i f f e r e n c e methods to

% approximate the value o f a American opt ion

%% Inputs :

% k − s t r i k e p r i c e

% s 0 − i n i t a l s tock p r i c e

% r − r i s k f r e i n t r e s t r a t e

MA4XA 93 Dr. A. Chernov



Numerical and Analytic Methods in Option Pricing D. Edwards

% q− d iv idends during the l i f e t i m e o f the opt ion

% T − the time o f the opt ion to e x i r a r y

% sigma − the v o l a t i l i t y o f the s tock

% s min − the minimum value o f the s tock con i sde red

% s max − the maximum value o f the s tock cons ide r ed

% M − the number o f i n t e r v a l s o f s tock p r i c e cons ide r ed . (M+1 po in t s

↪→ cons ide r ed )

% N − the numer o f i n t e r v a l s o f time cons ide r ed (N+1 po in t s cons ide rd )

% type − takes va lue ’C’ f o r c a l l s and ’P’ f o r puts .

% s min should be chosen s . t . the va lue f o r a c a l l i s ze ro here .

% s max should be chosen s . t . the va lye f o r a put i s ze ro here .

%% Calcu la te dt and dS from T, s min , s max , N and M.

dt = T/N;

dS = ( s max − s min ) /M;

%% We impose the te rmina l c o n d i t i o n s .

i f strcmp ( type , ’C’ ) == 1 ;

%% Store Boundry c o n t i t i o n s

f o r j = 1 :M+1

D( j , 1 ) = max( s min + ( j−1)∗dS−k , 0) ;

end

e l s e

%% Store Boundry c o n d i t i o n s

f o r j = 1 :M+1

D( j , 1 ) = max( k − s min − ( j−1)∗dS , 0) ;

end

end

%% Calcu la te our c o e f f i c e n t s a∗ j , b∗ j and c∗ j .

f o r j = 1 :M+1

A( j , 1 ) = (1/(1+ r ∗dt ) ) ∗(−0.5∗( r−q ) ∗( j−1)∗dt + 0 . 5∗ ( sigma ˆ2) ∗ ( ( j−1)ˆ2) ∗
↪→ dt ) ;

B( j , 1 ) = (1/(1+ r ∗dt ) ) ∗(1−( sigma ˆ2) ∗ ( ( j−1)ˆ2) ∗dt ) ;

C( j , 1 ) = (1/(1+ r ∗dt ) ) ∗ ( 0 . 5∗ ( r−q ) ∗( j−1)∗dt + 0 . 5∗ ( sigma ˆ2) ∗ ( ( j−1)ˆ2) ∗
↪→ dt ) ;

end

%% We w i l l perfrom vecto r ope ra t i on s to c a l c u l a t e at the N−1th step .

% We s h i f t the vecot r to do t h i s .
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Shi ftD = c i r c s h i f t (D,[−1 1 ] ) ;

Shi ftD2 = c i r c s h i f t (D, [ 1 1 ] ) ;

%% These s h i f t s l e ave non−zero va lue s where the re should be .

% We zero these now .

Shi ftD (M+1 ,1) = 0 ;

Shi ftD2 (1 , 1 ) = 0 ;

%% Calcu la te the va lue s one time i n v e r v a l backwards

F( 1 :M+1 ,1) = A( 1 :M+1 ,1) .∗ ShiftD2 ( 1 :M+1 ,1) + B( 1 :M+1 ,1) .∗D( 1 :M+1 ,1) + C( 1 :

↪→ M+1 ,1) .∗ ShiftD ( 1 :M+1 ,1) ;

%% We have c a l c u l a t e d the terms at the boundary o f S ( j=1 and j=M+1) .

% We must s e t the se to the boundary c o n d i t i o n s .

i f strcmp ( type , ’C’ ) == 1 ;

F(1 , 1 ) = 0 ;

F(M+1 ,1) = max( s max−k , 0) ;

e l s e

F(1 , 1 ) = k∗exp(−r ∗dt ) ;

F(M+1 ,1) = 0 ;

end

%% Calcu la te the payo f f at these nodes .

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 1 : M+1

PayOff ( j , 1 ) = max( 0 , ( j−1)∗dS + s min −k ) ;

end

e l s e

f o r j = 1 : M+1

PayOff ( j , 1 ) = max(0 , k−( j−1)∗dS − s min ) ;

end

end

%% Now we may take the maximum to determine i f e a r l y e x e r c i s e i s opt imal .

F = max( PayOff , F) ;

%% These are our va lue s at time step N−1. We s t o r e the se in a matrix .

f = ze ro s (M+1,N) ;

f ( 1 :M+1,N) = F( 1 :M+1 ,1) ;

%% Loop through back to time step 0 .

f o r i = 0 :N−2
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D( 1 :M+1 ,1) = f ( 1 :M+1,N−i ) ;

%% We s h i f t t h i s again .

Shi ftD = c i r c s h i f t (D,[−1 1 ] ) ;

Shi ftD2 = c i r c s h i f t (D, [ 1 1 ] ) ;

%% These s h i f t s l e ave non−zero va lue s where the re should be . We zero

↪→ the se now .

Shi ftD (M+1 ,1) = 0 ;

Shi ftD2 (1 , 1 ) = 0 ;

%% Calcu la te the va lue s one time i n v e r v a l backwards

F( 1 :M+1 ,1) = A( 1 :M+1 ,1) .∗ ShiftD2 ( 1 :M+1 ,1) + B( 1 :M+1 ,1) .∗D( 1 :M+1 ,1) + C( 1 :

↪→ M+1 ,1) .∗ ShiftD ( 1 :M+1 ,1) ;

%% Here we have c a l c u l a t e d the terms at the boundary o f S ( j=1 and j=M+1)

↪→ .

% We must s e t the se to the boundary c o n d i t i o n s .

i f strcmp ( type , ’C’ ) == 1 ;

F(1 , 1 ) = 0 ;

F(M+1 ,1) = max( s max−k , 0) ;

e l s e

F(1 , 1 ) = k ;

F(M+1 ,1) = 0 ;

end

%% Calcu la te the payo f f at these nodes .

i f strcmp ( type , ’C’ ) == 1 ;

f o r j = 1 : M+1

PayOff ( j , 1 ) = max( 0 , ( j−1)∗dS + s min −k ) ;

end

e l s e

f o r j = 1 : M−1

PayOff ( j , 1 ) = max(0 , k−( j−1)∗dS − s min ) ;

end

end

%% Now we may take the maximum to determine i f e a r l y e x e r c i s e i s opt imal .

F = max( PayOff , F) ;

%% These are our va lue s at time step N−1. We s t o r e the se in a matrix .

f ( 1 :M+1,N−1− i ) = F( 1 :M+1 ,1) ;
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end

%% Find the S 0 f o r the r i g h t s o l u t i o n .

f o r j = 0 :M

i f s 0 − j ∗dS + s min <= 0.0001 ;

Value = f ( j +1 ,1) ;

j found =1;

end

end

i f j found ˜= 1

di sp ( ’ Your s tock p r i c e i s not one o f the p a r i t i o n s o f the plane . Try

↪→ again and make sure s 0 = s min+j ∗dS f o r some j ’ )

Value = 0 ;

end
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